do.npca | R Documentation |
Nonnegative Principal Component Analysis (NPCA) is a variant of PCA where projection vectors - or, basis for learned subspace - contain no negative values.
do.npca(X, ndim = 2, ...)
X |
an (n\times p) matrix whose rows are observations and columns represent independent variables. |
ndim |
an integer-valued target dimension. |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
a (p\times ndim) whose columns are basis for projection.
name of the algorithm.
Kisung You
zafeiriou_nonnegative_2010Rdimtools
do.pca
## Not run: ## use iris data data(iris, package="Rdimtools") set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) + 50 label = as.factor(iris[subid,5]) ## run NCPA and compare with others outNPC = do.npca(X) outPCA = do.pca(X) outMVP = do.mvp(X, label) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(outNPC$Y, pch=19, col=label, main="NPCA") plot(outPCA$Y, pch=19, col=label, main="PCA") plot(outMVP$Y, pch=19, col=label, main="MVP") par(opar) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.