| do.npca | R Documentation |
Nonnegative Principal Component Analysis (NPCA) is a variant of PCA where projection vectors - or, basis for learned subspace - contain no negative values.
do.npca(X, ndim = 2, ...)
X |
an |
ndim |
an integer-valued target dimension. |
... |
extra parameters including
|
a named Rdimtools S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
a (p\times ndim) whose columns are basis for projection.
name of the algorithm.
Kisung You
zafeiriou_nonnegative_2010Rdimtools
do.pca
## Not run:
## use iris data
data(iris, package="Rdimtools")
set.seed(100)
subid = sample(1:150, 50)
X = as.matrix(iris[subid,1:4]) + 50
label = as.factor(iris[subid,5])
## run NCPA and compare with others
outNPC = do.npca(X)
outPCA = do.pca(X)
outMVP = do.mvp(X, label)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(outNPC$Y, pch=19, col=label, main="NPCA")
plot(outPCA$Y, pch=19, col=label, main="PCA")
plot(outMVP$Y, pch=19, col=label, main="MVP")
par(opar)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.