do.odp | R Documentation |
Orthogonal Discriminant Projection (ODP) is a linear dimension reduction method with label information, i.e., supervised. The method maximizes weighted difference between local and non-local scatter while local information is also preserved by constructing a neighborhood graph.
do.odp( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), type = c("proportion", 0.1), symmetric = c("union", "intersect", "asymmetric"), alpha = 0.5, beta = 10 )
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
label |
a length-n vector of data class labels. |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
alpha |
balancing parameter of non-local and local scatter in [0,1]. |
beta |
scaling control parameter for distant pairs of data in (0,∞). |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a (p\times ndim) whose columns are basis for projection.
a list containing information for out-of-sample prediction.
li_supervised_2009Rdimtools
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different beta (scaling control) parameter out1 = do.odp(X, label, beta=1) out2 = do.odp(X, label, beta=10) out3 = do.odp(X, label, beta=100) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, pch=19, main="ODP::beta=1") plot(out2$Y, col=label, pch=19, main="ODP::beta=10") plot(out3$Y, col=label, pch=19, main="ODP::beta=100") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.