| do.onpp | R Documentation |
Orthogonal Neighborhood Preserving Projection (ONPP) is an unsupervised linear dimension reduction method. It constructs a weighted data graph from LLE method. Also, it develops LPP method by preserving the structure of local neighborhoods.
do.onpp(
X,
ndim = 2,
type = c("proportion", 0.1),
preprocess = c("center", "scale", "cscale", "decorrelate", "whiten")
)
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a (p\times ndim) whose columns are basis for projection.
Kisung You
kokiopoulou_orthogonal_2007Rdimtools
## use iris data
data(iris)
set.seed(100)
subid = sample(1:150, 50)
X = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])
## try different numbers for neighborhood size
out1 = do.onpp(X, type=c("proportion",0.10))
out2 = do.onpp(X, type=c("proportion",0.25))
out3 = do.onpp(X, type=c("proportion",0.50))
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=label, main="ONPP::10% connectivity")
plot(out2$Y, pch=19, col=label, main="ONPP::25% connectivity")
plot(out3$Y, pch=19, col=label, main="ONPP::50% connectivity")
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.