do.pca | R Documentation |
do.pca
performs a classical principal component analysis \insertCitepearson_liii_1901Rdimtools using
RcppArmadillo
package for faster and efficient computation.
do.pca(X, ndim = 2, ...)
X |
an (n\times p) matrix whose rows are observations and columns represent independent variables. |
ndim |
an integer-valued target dimension. |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
a vector containing variances of projected data onto principal components.
a (p\times ndim) whose columns are basis for projection.
a list containing information for out-of-sample prediction.
name of the algorithm.
Kisung You
## use iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## try covariance & correlation decomposition out1 <- do.pca(X, ndim=2, cor=FALSE) out2 <- do.pca(X, ndim=2, cor=TRUE) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, col=lab, pch=19, main="correlation decomposition") plot(out2$Y, col=lab, pch=19, main="covariance decomposition") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.