| do.pca | R Documentation |
do.pca performs a classical principal component analysis \insertCitepearson_liii_1901Rdimtools using
RcppArmadillo package for faster and efficient computation.
do.pca(X, ndim = 2, ...)
X |
an |
ndim |
an integer-valued target dimension. |
... |
extra parameters including
|
a named Rdimtools S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
a vector containing variances of projected data onto principal components.
a (p\times ndim) whose columns are basis for projection.
a list containing information for out-of-sample prediction.
name of the algorithm.
Kisung You
## use iris data
data(iris)
set.seed(100)
subid = sample(1:150,50)
X = as.matrix(iris[subid,1:4])
lab = as.factor(iris[subid,5])
## try covariance & correlation decomposition
out1 <- do.pca(X, ndim=2, cor=FALSE)
out2 <- do.pca(X, ndim=2, cor=TRUE)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,2))
plot(out1$Y, col=lab, pch=19, main="correlation decomposition")
plot(out2$Y, col=lab, pch=19, main="covariance decomposition")
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.