do.rlda | R Documentation |
In small sample case, Linear Discriminant Analysis (LDA) may suffer from rank deficiency issue. Applied mathematics has used Tikhonov regularization - also known as \ell_2 regularization/shrinkage - to adjust linear operator. Regularized Linear Discriminant Analysis (RLDA) adopts such idea to stabilize eigendecomposition in LDA formulation.
do.rlda(X, label, ndim = 2, alpha = 1)
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
label |
a length-n vector of data class labels. |
ndim |
an integer-valued target dimension. |
alpha |
Tikhonow regularization parameter. |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a (p\times ndim) whose columns are basis for projection.
Kisung You
friedman_regularized_1989Rdimtools
## Not run: ## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different regularization parameters out1 <- do.rlda(X, label, alpha=0.001) out2 <- do.rlda(X, label, alpha=0.01) out3 <- do.rlda(X, label, alpha=100) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="RLDA::alpha=0.1") plot(out2$Y, pch=19, col=label, main="RLDA::alpha=1") plot(out3$Y, pch=19, col=label, main="RLDA::alpha=10") par(opar) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.