| do.rlda | R Documentation |
In small sample case, Linear Discriminant Analysis (LDA) may suffer from
rank deficiency issue. Applied mathematics has used Tikhonov regularization -
also known as \ell_2 regularization/shrinkage - to adjust linear operator.
Regularized Linear Discriminant Analysis (RLDA) adopts such idea to stabilize
eigendecomposition in LDA formulation.
do.rlda(X, label, ndim = 2, alpha = 1)
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
alpha |
Tikhonow regularization parameter. |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a (p\times ndim) whose columns are basis for projection.
Kisung You
friedman_regularized_1989Rdimtools
## Not run:
## use iris data
data(iris)
set.seed(100)
subid = sample(1:150, 50)
X = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])
## try different regularization parameters
out1 <- do.rlda(X, label, alpha=0.001)
out2 <- do.rlda(X, label, alpha=0.01)
out3 <- do.rlda(X, label, alpha=100)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=label, main="RLDA::alpha=0.1")
plot(out2$Y, pch=19, col=label, main="RLDA::alpha=1")
plot(out3$Y, pch=19, col=label, main="RLDA::alpha=10")
par(opar)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.