linear_RLDA: Regularized Linear Discriminant Analysis

do.rldaR Documentation

Regularized Linear Discriminant Analysis

Description

In small sample case, Linear Discriminant Analysis (LDA) may suffer from rank deficiency issue. Applied mathematics has used Tikhonov regularization - also known as \ell_2 regularization/shrinkage - to adjust linear operator. Regularized Linear Discriminant Analysis (RLDA) adopts such idea to stabilize eigendecomposition in LDA formulation.

Usage

do.rlda(X, label, ndim = 2, alpha = 1)

Arguments

X

an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables.

label

a length-n vector of data class labels.

ndim

an integer-valued target dimension.

alpha

Tikhonow regularization parameter.

Value

a named list containing

Y

an (n\times ndim) matrix whose rows are embedded observations.

trfinfo

a list containing information for out-of-sample prediction.

projection

a (p\times ndim) whose columns are basis for projection.

Author(s)

Kisung You

References

\insertRef

friedman_regularized_1989Rdimtools

Examples

## Not run: 
## use iris data
data(iris)
set.seed(100)
subid = sample(1:150, 50)
X     = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])

## try different regularization parameters
out1 <- do.rlda(X, label, alpha=0.001)
out2 <- do.rlda(X, label, alpha=0.01)
out3 <- do.rlda(X, label, alpha=100)

## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=label, main="RLDA::alpha=0.1")
plot(out2$Y, pch=19, col=label, main="RLDA::alpha=1")
plot(out3$Y, pch=19, col=label, main="RLDA::alpha=10")
par(opar)

## End(Not run)


Rdimtools documentation built on Dec. 28, 2022, 1:44 a.m.