do.rndproj | R Documentation |
do.rndproj
is a linear dimensionality reduction method based on
random projection technique, featured by the celebrated Johnson–Lindenstrauss lemma.
do.rndproj( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), type = c("gaussian", "achlioptas", "sparse"), s = max(sqrt(ncol(X)), 3) )
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
type |
a type of random projection, one of "gaussian","achlioptas" or "sparse". |
s |
a tuning parameter for determining values in projection matrix. While default is to use max(log √{p},3), it is required for s ≥ 3. |
The Johnson-Lindenstrauss(JL) lemma states that given 0 < ε < 1, for a set X of m points in R^N and a number n > 8log(m)/ε^2, there is a linear map f:R^N to R^n such that
(1-ε)|u-v|^2 ≤ |f(u)-f(v)|^2 ≤ (1+ε)|u-v|^2
for all u,v in X.
Three types of random projections are supported for an (p-by-ndim)
projection matrix R.
Conventional approach is to use normalized Gaussian random vectors sampled from unit sphere S^{p-1}.
Achlioptas suggested to employ a sparse approach using samples from √{3}(1,0,-1) with probability (1/6,4/6,1/6).
Li et al proposed to sample from √{s}(1,0,-1) with probability (1/2s,1-1/s,1/2s) for s≥ 3 to incorporate sparsity while attaining speedup with little loss in accuracy. While the original suggsetion from the authors is to use √{p} or p/log(p) for s, any user-supported s ≥ 3 is allowed.
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a (p\times ndim) whose columns are basis for projection.
an estimated error ε in accordance with JL lemma.
a list containing information for out-of-sample prediction.
johnson_extensions_1984Rdimtools
\insertRefachlioptas_databasefriendly_2003Rdimtools
\insertRefli_very_2006Rdimtools
## use iris data data(iris) set.seed(100) subid = sample(1:150, 50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## 1. Gaussian projection output1 <- do.rndproj(X,ndim=2) ## 2. Achlioptas projection output2 <- do.rndproj(X,ndim=2,type="achlioptas") ## 3. Sparse projection output3 <- do.rndproj(X,type="sparse") ## Visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, pch=19, col=label, main="RNDPROJ::Gaussian") plot(output2$Y, pch=19, col=label, main="RNDPROJ::Arclioptas") plot(output3$Y, pch=19, col=label, main="RNDPROJ::Sparse") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.