do.sammc | R Documentation |
Semi-Supervised Adaptive Maximum Margin Criterion (SAMMC) is a semi-supervised variant of AMMC by making use of both labeled and unlabeled data.
do.sammc( X, label, ndim = 2, type = c("proportion", 0.1), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), a = 1, b = 1, lambda = 1, beta = 1 )
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
label |
a length-n vector of data class labels. |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
a |
tuning parameter for between-class weight in [0,∞). |
b |
tuning parameter for within-class weight in [0,∞). |
lambda |
balance parameter for between-class and within-class scatter matrices in (0,∞). |
beta |
balance parameter for within-class scatter of the labeled data and consistency of the whole data in (0,∞). |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a (p\times ndim) whose columns are basis for projection.
Kisung You
lu_adaptive_2011Rdimtools
do.mmc
, do.ammc
## generate data of 3 types with clear difference set.seed(100) dt1 = aux.gensamples(n=33)-50 dt2 = aux.gensamples(n=33) dt3 = aux.gensamples(n=33)+50 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=33) ## copy a label and let 20% of elements be missing nlabel = length(label) nmissing = round(nlabel*0.20) label_missing = label label_missing[sample(1:nlabel, nmissing)]=NA ## try different balancing out1 = do.sammc(X, label_missing, beta=0.1) out2 = do.sammc(X, label_missing, beta=1) out3 = do.sammc(X, label_missing, beta=10) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="SAMMC::beta=0.1") plot(out2$Y, pch=19, col=label, main="SAMMC::beta=1") plot(out3$Y, pch=19, col=label, main="SAMMC::beta=10") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.