do.spca | R Documentation |
Sparse PCA (do.spca
) is a variant of PCA in that each loading - or, principal
component - should be sparse. Instead of using generic optimization package,
we opt for formulating a problem as semidefinite relaxation and utilizing ADMM.
do.spca(X, ndim = 2, mu = 1, rho = 1, ...)
X |
an (n\times p) matrix whose rows are observations and columns represent independent variables. |
ndim |
an integer-valued target dimension. |
mu |
an augmented Lagrangian parameter. |
rho |
a regularization parameter for sparsity. |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
a (p\times ndim) whose columns are basis for projection.
name of the algorithm.
Kisung You
zou_sparse_2006Rdimtools
\insertRefdaspremont_direct_2007Rdimtools
\insertRefma_alternating_2013Rdimtools
do.pca
## use iris data data(iris, package="Rdimtools") set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## try different regularization parameters for sparsity out1 <- do.spca(X,ndim=2,rho=0.01) out2 <- do.spca(X,ndim=2,rho=1) out3 <- do.spca(X,ndim=2,rho=100) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=lab, pch=19, main="SPCA::rho=0.01") plot(out2$Y, col=lab, pch=19, main="SPCA::rho=1") plot(out3$Y, col=lab, pch=19, main="SPCA::rho=100") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.