| do.ssldp | R Documentation |
Semi-Supervised Locally Discriminant Projection (SSLDP) is a semi-supervised extension of LDP. It utilizes unlabeled data to overcome the small-sample-size problem under the situation where labeled data have the small number. Using two information, it both constructs the within- and between-class weight matrices incorporating the neighborhood information of the data set.
do.ssldp(
X,
label,
ndim = 2,
type = c("proportion", 0.1),
preprocess = c("center", "scale", "cscale", "whiten", "decorrelate"),
beta = 0.5
)
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
beta |
balancing parameter for intra- and inter-class information in |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a (p\times ndim) whose columns are basis for projection.
Kisung You
zhang_semisupervised_2011Rdimtools
## use iris data
data(iris)
X = as.matrix(iris[,1:4])
label = as.integer(iris$Species)
## copy a label and let 10% of elements be missing
nlabel = length(label)
nmissing = round(nlabel*0.10)
label_missing = label
label_missing[sample(1:nlabel, nmissing)]=NA
## compute with 3 different levels of 'beta' values
out1 = do.ssldp(X, label_missing, beta=0.1)
out2 = do.ssldp(X, label_missing, beta=0.5)
out3 = do.ssldp(X, label_missing, beta=0.9)
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, col=label, main="SSLDP::beta=0.1")
plot(out2$Y, col=label, main="SSLDP::beta=0.5")
plot(out3$Y, col=label, main="SSLDP::beta=0.9")
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.