do.bmds | R Documentation |
A Bayesian formulation of classical Multidimensional Scaling is presented.
Even though this method is based on MCMC sampling, we only return maximum a posterior (MAP) estimate
that maximizes the posterior distribution. Due to its nature without any special tuning,
increasing mc.iter
requires much computation. A note on the method is that
this algorithm does not return an explicit form of projection matrix so it's
classified in our package as a nonlinear method. Also, automatic dimension selection is not supported
for simplicity as well as consistency with other methods in the package.
do.bmds( X, ndim = 2, par.a = 5, par.alpha = 0.5, par.step = 1, mc.iter = 50, print.progress = FALSE )
X |
an (n\times p) matrix whose rows are observations and columns represent independent variables. |
ndim |
an integer-valued target dimension. |
par.a |
hyperparameter for conjugate prior on variance term, i.e., σ^2 \sim IG(a,b). Note that b is chosen appropriately as in paper. |
par.alpha |
hyperparameter for conjugate prior on diagonal term, i.e., λ_j \sim IG(α, β_j). Note that β_j is chosen appropriately as in paper. |
par.step |
stepsize for random-walk, which is standard deviation of Gaussian proposal. |
mc.iter |
the number of MCMC iterations. |
print.progress |
a logical; |
a named Rdimtools
S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
name of the algorithm.
Kisung You
oh_bayesian_2001Rdimtools
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## compare with other methods outBMD <- do.bmds(X, ndim=2) outPCA <- do.pca(X, ndim=2) outLDA <- do.lda(X, label, ndim=2) ## visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(outBMD$Y, pch=19, col=label, main="Bayesian MDS") plot(outPCA$Y, pch=19, col=label, main="PCA") plot(outLDA$Y, pch=19, col=label, main="LDA") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.