| do.dppca | R Documentation |
Dual view of PPCA optimizes the latent variables directly from a simple
Bayesian approach to model the noise using the multivariate Gaussian distribution
of zero mean and spherical covariance \beta^{-1} I. When \beta is too small,
the algorithm automatically returns an error and provides a guideline for minimal
value that enables successful computation.
do.dppca(X, ndim = 2, beta = 1)
X |
an |
ndim |
an integer-valued target dimension (default: 2). |
beta |
the degree for modeling the level of noise (default: 1). |
a named Rdimtools S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
name of the algorithm.
lawrence_probabilistic_2005Rdimtools
do.ppca
## load iris data
data(iris)
X = as.matrix(iris[,1:4])
lab = as.factor(iris[,5])
## compare difference choices of 'beta'
embed1 <- do.dppca(X, beta=0.2)
embed2 <- do.dppca(X, beta=1)
embed3 <- do.dppca(X, beta=5)
## Visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
plot(embed1$Y , col=lab, pch=19, main="beta=0.2")
plot(embed2$Y , col=lab, pch=19, main="beta=1")
plot(embed3$Y , col=lab, pch=19, main="beta=5")
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.