do.dppca | R Documentation |
Dual view of PPCA optimizes the latent variables directly from a simple Bayesian approach to model the noise using the multivariate Gaussian distribution of zero mean and spherical covariance β^{-1} I. When β is too small, the algorithm automatically returns an error and provides a guideline for minimal value that enables successful computation.
do.dppca(X, ndim = 2, beta = 1)
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
ndim |
an integer-valued target dimension (default: 2). |
beta |
the degree for modeling the level of noise (default: 1). |
a named Rdimtools
S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
name of the algorithm.
lawrence_probabilistic_2005Rdimtools
do.ppca
## load iris data data(iris) X = as.matrix(iris[,1:4]) lab = as.factor(iris[,5]) ## compare difference choices of 'beta' embed1 <- do.dppca(X, beta=0.2) embed2 <- do.dppca(X, beta=1) embed3 <- do.dppca(X, beta=5) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3), pty="s") plot(embed1$Y , col=lab, pch=19, main="beta=0.2") plot(embed2$Y , col=lab, pch=19, main="beta=1") plot(embed3$Y , col=lab, pch=19, main="beta=5") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.