do.fastmap | R Documentation |
do.fastmap
is an implementation of FastMap algorithm. Though
it shares similarities with MDS, it is innately a nonlinear method that makes an iterative update
for the projection information using pairwise distance information.
do.fastmap( X, ndim = 2, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate") )
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
faloutsos_fastmap_1995Rdimtools
## Not run: ## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## let's compare with other methods out1 <- do.pca(X, ndim=2) # PCA out2 <- do.mds(X, ndim=2) # Classical MDS out3 <- do.fastmap(X, ndim=2) # FastMap ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="PCA") plot(out2$Y, pch=19, col=label, main="MDS") plot(out3$Y, pch=19, col=label, main="FastMap") par(opar) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.