do.iltsa | R Documentation |
Conventional LTSA method relies on PCA for approximating local tangent spaces. Improved LTSA (ILTSA) provides a remedy that can efficiently recover the geometric structure of data manifolds even when data are sparse or non-uniformly distributed.
do.iltsa( X, ndim = 2, type = c("proportion", 0.25), symmetric = c("union", "intersect", "asymmetric"), preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), t = 10 )
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
symmetric |
one of |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
t |
heat kernel bandwidth parameter in (0,∞). |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
zhang_improved_2011Rdimtools
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different bandwidth size out1 <- do.iltsa(X, t=1) out2 <- do.iltsa(X, t=10) out3 <- do.iltsa(X, t=100) ## Visualize two comparisons opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="ILTSA::t=1") plot(out2$Y, pch=19, col=label, main="ILTSA::t=10") plot(out3$Y, pch=19, col=label, main="ILTSA::t=100") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.