| do.keca | R Documentation |
Kernel Entropy Component Analysis(KECA) is a kernel method of dimensionality reduction.
Unlike Kernel PCA(do.kpca), it utilizes eigenbasis of kernel matrix K
in accordance with indices of largest Renyi quadratic entropy in which entropy for
j-th eigenpair is defined to be √{λ_j}e_j^T 1_n, where e_j is
j-th eigenvector of an uncentered kernel matrix K.
do.keca(
X,
ndim = 2,
kernel = c("gaussian", 1),
preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate")
)
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
ndim |
an integer-valued target dimension. |
kernel |
a vector containing name of a kernel and corresponding parameters. See also |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a length-ndim vector of estimated entropy values.
Kisung You
jenssen_kernel_2010Rdimtools
aux.kernelcov
## load iris data
data(iris)
set.seed(100)
subid = sample(1:150,50)
X = as.matrix(iris[subid,1:4])
label = as.factor(iris[subid,5])
## 1. standard KECA with gaussian kernel
output1 <- do.keca(X,ndim=2)
## 2. gaussian kernel with large bandwidth
output2 <- do.keca(X,ndim=2,kernel=c("gaussian",5))
## 3. use laplacian kernel
output3 <- do.keca(X,ndim=2,kernel=c("laplacian",1))
## Visualize three different projections
opar = par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(output1$Y, pch=19, col=label, main="Gaussian kernel")
plot(output2$Y, pch=19, col=label, main="Gaussian, sigma=5")
plot(output3$Y, pch=19, col=label, main="Laplacian kernel")
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.