do.kmfa | R Documentation |
Kernel Marginal Fisher Analysis (KMFA) is a nonlinear variant of MFA using kernel tricks. For simplicity, we only enabled a heat kernel of a form
k(x_i,x_j)=\exp(-d(x_i,x_j)^2/2*t^2)
where t is a bandwidth parameter. Note that the method is far sensitive to the choice of t.
do.kmfa( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"), k1 = max(ceiling(nrow(X)/10), 2), k2 = max(ceiling(nrow(X)/10), 2), t = 1 )
X |
an (n\times p) matrix or data frame whose rows are observations. |
label |
a length-n vector of data class labels. |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
k1 |
the number of same-class neighboring points (homogeneous neighbors). |
k2 |
the number of different-class neighboring points (heterogeneous neighbors). |
t |
bandwidth parameter for heat kernel in (0,∞). |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
yan_graph_2007Rdimtools
## generate data of 3 types with clear difference set.seed(100) dt1 = aux.gensamples(n=20)-100 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+100 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## try different numbers for neighborhood size out1 = do.kmfa(X, label, k1=10, k2=10, t=0.001) out2 = do.kmfa(X, label, k1=10, k2=10, t=0.01) out3 = do.kmfa(X, label, k1=10, k2=10, t=0.1) ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="bandwidth=0.001") plot(out2$Y, pch=19, col=label, main="bandwidth=0.01") plot(out3$Y, pch=19, col=label, main="bandwidth=0.1") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.