| do.kmfa | R Documentation |
Kernel Marginal Fisher Analysis (KMFA) is a nonlinear variant of MFA using kernel tricks. For simplicity, we only enabled a heat kernel of a form
k(x_i,x_j)=\exp(-d(x_i,x_j)^2/2*t^2)
where t is a bandwidth parameter. Note that the method is far sensitive to the choice of t.
do.kmfa(
X,
label,
ndim = 2,
preprocess = c("center", "scale", "cscale", "decorrelate", "whiten"),
k1 = max(ceiling(nrow(X)/10), 2),
k2 = max(ceiling(nrow(X)/10), 2),
t = 1
)
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
k1 |
the number of same-class neighboring points (homogeneous neighbors). |
k2 |
the number of different-class neighboring points (heterogeneous neighbors). |
t |
bandwidth parameter for heat kernel in |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
yan_graph_2007Rdimtools
## generate data of 3 types with clear difference
set.seed(100)
dt1 = aux.gensamples(n=20)-100
dt2 = aux.gensamples(n=20)
dt3 = aux.gensamples(n=20)+100
## merge the data and create a label correspondingly
X = rbind(dt1,dt2,dt3)
label = rep(1:3, each=20)
## try different numbers for neighborhood size
out1 = do.kmfa(X, label, k1=10, k2=10, t=0.001)
out2 = do.kmfa(X, label, k1=10, k2=10, t=0.01)
out3 = do.kmfa(X, label, k1=10, k2=10, t=0.1)
## visualize
opar = par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=label, main="bandwidth=0.001")
plot(out2$Y, pch=19, col=label, main="bandwidth=0.01")
plot(out3$Y, pch=19, col=label, main="bandwidth=0.1")
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.