do.kmmc | R Documentation |
Kernel Maximum Margin Criterion (KMMC) is a nonlinear variant of MMC method using kernel trick.
For computational simplicity, only the gaussian kernel is used with bandwidth parameter t
.
do.kmmc( X, label, ndim = 2, preprocess = c("center", "decorrelate", "whiten"), t = 1 )
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
label |
a length-n vector of data class labels. |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
t |
bandwidth parameter for heat kernel in (0,∞). |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
li_efficient_2006Rdimtools
do.mmc
## load iris data data(iris) set.seed(100) subid = sample(1:150,100) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## perform MVP with different preprocessings out1 = do.kmmc(X, label, t=0.1) out2 = do.kmmc(X, label, t=1.0) out3 = do.kmmc(X, label, t=10.0) ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="bandwidth=0.1") plot(out2$Y, pch=19, col=label, main="bandwidth=1") plot(out3$Y, pch=19, col=label, main="bandwidth=10.0") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.