| do.kqmi | R Documentation |
Kernel Quadratic Mutual Information (KQMI) is a supervised linear dimension reduction method. Quadratic Mutual Information is an efficient nonparametric estimation method for Mutual Information for class labels not requiring class priors. The method re-states the estimation procedure in terms of kernel objective in the graph embedding framework.
do.kqmi(
X,
label,
ndim = 2,
preprocess = c("center", "scale", "cscale", "whiten", "decorrelate"),
t = 10
)
X |
an |
label |
a length- |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
t |
bandwidth parameter for heat kernel in |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a (p\times ndim) whose columns are basis for projection.
Kisung You
bouzas_graph_2015Rdimtools
do.lqmi
## Not run:
## generate 3 different groups of data X and label vector
x1 = matrix(rnorm(4*10), nrow=10)-20
x2 = matrix(rnorm(4*10), nrow=10)
x3 = matrix(rnorm(4*10), nrow=10)+20
X = rbind(x1, x2, x3)
label = c(rep(1,10), rep(2,10), rep(3,10))
## try different kernel bandwidths
out1 = do.kqmi(X, label, t=0.01)
out2 = do.kqmi(X, label, t=1)
out3 = do.kqmi(X, label, t=100)
## visualize
opar = par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, col=label, main="KQMI::t=0.01")
plot(out2$Y, col=label, main="KQMI::t=1")
plot(out3$Y, col=label, main="KQMI::t=100")
par(opar)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.