do.kqmi | R Documentation |
Kernel Quadratic Mutual Information (KQMI) is a supervised linear dimension reduction method. Quadratic Mutual Information is an efficient nonparametric estimation method for Mutual Information for class labels not requiring class priors. The method re-states the estimation procedure in terms of kernel objective in the graph embedding framework.
do.kqmi( X, label, ndim = 2, preprocess = c("center", "scale", "cscale", "whiten", "decorrelate"), t = 10 )
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
label |
a length-n vector of data class labels. |
ndim |
an integer-valued target dimension. |
preprocess |
an additional option for preprocessing the data.
Default is "center". See also |
t |
bandwidth parameter for heat kernel in (0,∞). |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
a (p\times ndim) whose columns are basis for projection.
Kisung You
bouzas_graph_2015Rdimtools
do.lqmi
## Not run: ## generate 3 different groups of data X and label vector x1 = matrix(rnorm(4*10), nrow=10)-20 x2 = matrix(rnorm(4*10), nrow=10) x3 = matrix(rnorm(4*10), nrow=10)+20 X = rbind(x1, x2, x3) label = c(rep(1,10), rep(2,10), rep(3,10)) ## try different kernel bandwidths out1 = do.kqmi(X, label, t=0.01) out2 = do.kqmi(X, label, t=1) out3 = do.kqmi(X, label, t=100) ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, col=label, main="KQMI::t=0.01") plot(out2$Y, col=label, main="KQMI::t=1") plot(out3$Y, col=label, main="KQMI::t=100") par(opar) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.