do.ksda | R Documentation |
Kernel Semi-Supervised Discriminant Analysis (KSDA) is a nonlinear variant of
SDA (do.sda
). For simplicity, we enabled heat/gaussian kernel only.
Note that this method is quite sensitive to choices of
parameters, alpha
, beta
, and t
. Especially when data
are well separated in the original space, it may lead to unsatisfactory results.
do.ksda( X, label, ndim = 2, type = c("proportion", 0.1), alpha = 1, beta = 1, t = 1 )
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
label |
a length-n vector of data class labels. |
ndim |
an integer-valued target dimension. |
type |
a vector of neighborhood graph construction. Following types are supported;
|
alpha |
balancing parameter between model complexity and empirical loss. |
beta |
Tikhonov regularization parameter. |
t |
bandwidth parameter for heat kernel. |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a list containing information for out-of-sample prediction.
Kisung You
cai_semisupervised_2007Rdimtools
do.sda
## generate data of 3 types with clear difference set.seed(100) dt1 = aux.gensamples(n=20)-100 dt2 = aux.gensamples(n=20) dt3 = aux.gensamples(n=20)+100 ## merge the data and create a label correspondingly X = rbind(dt1,dt2,dt3) label = rep(1:3, each=20) ## copy a label and let 10% of elements be missing nlabel = length(label) nmissing = round(nlabel*0.10) label_missing = label label_missing[sample(1:nlabel, nmissing)]=NA ## compare true case with missing-label case out1 = do.ksda(X, label, beta=0, t=0.1) out2 = do.ksda(X, label_missing, beta=0, t=0.1) ## visualize opar = par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(out1$Y, col=label, main="true projection") plot(out2$Y, col=label, main="20% missing labels") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.