| do.lapeig | R Documentation |
do.lapeig performs Laplacian Eigenmaps (LE) to discover low-dimensional
manifold embedded in high-dimensional data space using graph laplacians. This
is a classic algorithm employing spectral graph theory.
do.lapeig(X, ndim = 2, ...)
X |
an |
ndim |
an integer-valued target dimension. |
... |
extra parameters including
|
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a vector of eigenvalues for laplacian matrix.
a list containing information for out-of-sample prediction.
name of the algorithm.
Kisung You
belkin_laplacian_2003Rdimtools
## use iris data
data(iris)
set.seed(100)
subid = sample(1:150,50)
X = as.matrix(iris[subid,1:4])
lab = as.factor(iris[subid,5])
## try different levels of connectivity
out1 <- do.lapeig(X, type=c("proportion",0.5), weighted=FALSE)
out2 <- do.lapeig(X, type=c("proportion",0.10), weighted=FALSE)
out3 <- do.lapeig(X, type=c("proportion",0.25), weighted=FALSE)
## Visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(out1$Y, pch=19, col=lab, main="5% connected")
plot(out2$Y, pch=19, col=lab, main="10% connected")
plot(out3$Y, pch=19, col=lab, main="25% connected")
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.