do.lapeig | R Documentation |
do.lapeig
performs Laplacian Eigenmaps (LE) to discover low-dimensional
manifold embedded in high-dimensional data space using graph laplacians. This
is a classic algorithm employing spectral graph theory.
do.lapeig(X, ndim = 2, ...)
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
ndim |
an integer-valued target dimension. |
... |
extra parameters including
|
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
a vector of eigenvalues for laplacian matrix.
a list containing information for out-of-sample prediction.
name of the algorithm.
Kisung You
belkin_laplacian_2003Rdimtools
## use iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) lab = as.factor(iris[subid,5]) ## try different levels of connectivity out1 <- do.lapeig(X, type=c("proportion",0.5), weighted=FALSE) out2 <- do.lapeig(X, type=c("proportion",0.10), weighted=FALSE) out3 <- do.lapeig(X, type=c("proportion",0.25), weighted=FALSE) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=lab, main="5% connected") plot(out2$Y, pch=19, col=lab, main="10% connected") plot(out3$Y, pch=19, col=lab, main="25% connected") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.