do.mmds | R Documentation |
Metric MDS is a nonlinear method that is solved iteratively. We adopt a well-known SMACOF algorithm for updates with uniform weights over all pairwise distances after initializing the low-dimensional configuration via classical MDS.
do.mmds(X, ndim = 2, ...)
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
ndim |
an integer-valued target dimension (default: 2). |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
name of the algorithm.
leeuw_applications_1977Rdimtools
\insertRefborg_modern_2010Rdimtools
## load iris data data(iris) X = as.matrix(iris[,1:4]) lab = as.factor(iris[,5]) ## compare with other methods pca2d <- do.pca(X, ndim=2) cmd2d <- do.mds(X, ndim=2) mmd2d <- do.mmds(X, ndim=2) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(pca2d$Y, col=lab, pch=19, main="PCA") plot(cmd2d$Y, col=lab, pch=19, main="Classical MDS") plot(mmd2d$Y, col=lab, pch=19, main="Metric MDS") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.