| do.mmds | R Documentation |
Metric MDS is a nonlinear method that is solved iteratively. We adopt a well-known SMACOF algorithm for updates with uniform weights over all pairwise distances after initializing the low-dimensional configuration via classical MDS.
do.mmds(X, ndim = 2, ...)
X |
an |
ndim |
an integer-valued target dimension (default: 2). |
... |
extra parameters including
|
a named Rdimtools S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
name of the algorithm.
leeuw_applications_1977Rdimtools
\insertRefborg_modern_2010Rdimtools
## load iris data
data(iris)
X = as.matrix(iris[,1:4])
lab = as.factor(iris[,5])
## compare with other methods
pca2d <- do.pca(X, ndim=2)
cmd2d <- do.mds(X, ndim=2)
mmd2d <- do.mmds(X, ndim=2)
## Visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(pca2d$Y, col=lab, pch=19, main="PCA")
plot(cmd2d$Y, col=lab, pch=19, main="Classical MDS")
plot(mmd2d$Y, col=lab, pch=19, main="Metric MDS")
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.