do.phate | R Documentation |
PHATE is a nonlinear method that is specifically targeted at visualizing high-dimensional data by embedding it on 2- or 3-dimensional space. We offer a native implementation of PHATE solely in R/C++ without interface to python module.
do.phate( X, ndim = 2, k = 5, alpha = 10, dtype = c("sqrt", "log"), smacof = TRUE, ... )
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
ndim |
an integer-valued target dimension (default: 2). |
k |
size of nearest neighborhood (default: 5). |
alpha |
decay parameter for Gaussian kernel exponent (default: 10). |
dtype |
type of potential distance transformation; |
smacof |
a logical; |
... |
extra parameters including
|
a named Rdimtools
S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
name of the algorithm.
moon_visualizing_2019Rdimtools
## load iris data data(iris) X = as.matrix(iris[,1:4]) lab = as.factor(iris[,5]) ## compare different neighborhood sizes. pca2d <- do.pca(X, ndim=2) phk01 <- do.phate(X, ndim=2, k=2) phk02 <- do.phate(X, ndim=2, k=5) phk03 <- do.phate(X, ndim=2, k=7) ## Visualize opar <- par(no.readonly=TRUE) par(mfrow=c(2,2)) plot(pca2d$Y, col=lab, pch=19, main="PCA") plot(phk01$Y, col=lab, pch=19, main="PHATE:k=2") plot(phk02$Y, col=lab, pch=19, main="PHATE:k=5") plot(phk03$Y, col=lab, pch=19, main="PHATE:k=7") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.