| do.phate | R Documentation |
PHATE is a nonlinear method that is specifically targeted at visualizing high-dimensional data by embedding it on 2- or 3-dimensional space. We offer a native implementation of PHATE solely in R/C++ without interface to python module.
do.phate(
X,
ndim = 2,
k = 5,
alpha = 10,
dtype = c("sqrt", "log"),
smacof = TRUE,
...
)
X |
an |
ndim |
an integer-valued target dimension (default: 2). |
k |
size of nearest neighborhood (default: 5). |
alpha |
decay parameter for Gaussian kernel exponent (default: 10). |
dtype |
type of potential distance transformation; |
smacof |
a logical; |
... |
extra parameters including
|
a named Rdimtools S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
name of the algorithm.
moon_visualizing_2019Rdimtools
## load iris data
data(iris)
X = as.matrix(iris[,1:4])
lab = as.factor(iris[,5])
## compare different neighborhood sizes.
pca2d <- do.pca(X, ndim=2)
phk01 <- do.phate(X, ndim=2, k=2)
phk02 <- do.phate(X, ndim=2, k=5)
phk03 <- do.phate(X, ndim=2, k=7)
## Visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2))
plot(pca2d$Y, col=lab, pch=19, main="PCA")
plot(phk01$Y, col=lab, pch=19, main="PHATE:k=2")
plot(phk02$Y, col=lab, pch=19, main="PHATE:k=5")
plot(phk03$Y, col=lab, pch=19, main="PHATE:k=7")
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.