do.ree | R Documentation |
Robust Euclidean Embedding (REE) is an embedding procedure exploiting robustness of \ell_1 cost function. In our implementation, we adopted a generalized version with weight matrix to be applied as well. Its original paper introduced a subgradient algorithm to overcome memory-intensive nature of original semidefinite programming formulation.
do.ree( X, ndim = 2, W = NA, preprocess = c("null", "center", "scale", "cscale", "whiten", "decorrelate"), initc = 1, dmethod = c("euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski"), maxiter = 100, abstol = 0.001 )
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
ndim |
an integer-valued target dimension. |
W |
an (n\times n) weight matrix. Default is uniform weight of 1s. |
preprocess |
an additional option for preprocessing the data.
Default is "null". See also |
initc |
initial |
dmethod |
a type of distance measure. See |
maxiter |
maximum number of iterations for subgradient descent method. |
abstol |
stopping criterion for subgradient descent method. |
a named list containing
an (n\times ndim) matrix whose rows are embedded observations.
the number of iterations taken til convergence.
a list containing information for out-of-sample prediction.
Kisung You
cayton_robust_2006Rdimtools
## use iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different distance method output1 <- do.ree(X, maxiter=50, dmethod="euclidean") output2 <- do.ree(X, maxiter=50, dmethod="maximum") output3 <- do.ree(X, maxiter=50, dmethod="canberra") ## visualize three different projections opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(output1$Y, col=label, pch=19, main="dmethod-euclidean") plot(output2$Y, col=label, pch=19, main="dmethod-maximum") plot(output3$Y, col=label, pch=19, main="dmethod-canberra") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.