do.sne | R Documentation |
Stochastic Neighbor Embedding (SNE) is a probabilistic approach to mimick distributional
description in high-dimensional - possible, nonlinear - subspace on low-dimensional target space.
do.sne
fully adopts algorithm details in an original paper by Hinton and Roweis (2002).
do.sne( X, ndim = 2, perplexity = 30, eta = 0.05, maxiter = 2000, jitter = 0.3, jitterdecay = 0.99, momentum = 0.5, pca = TRUE, pcascale = FALSE, symmetric = FALSE )
X |
an (n\times p) matrix or data frame whose rows are observations and columns represent independent variables. |
ndim |
an integer-valued target dimension. |
perplexity |
desired level of perplexity; ranging [5,50]. |
eta |
learning parameter. |
maxiter |
maximum number of iterations. |
jitter |
level of white noise added at the beginning. |
jitterdecay |
decay parameter in (0,1). The closer to 0, the faster artificial noise decays. |
momentum |
level of acceleration in learning. |
pca |
whether to use PCA as preliminary step; |
pcascale |
a logical; |
symmetric |
a logical; |
a named Rdimtools
S3 object containing
an (n\times ndim) matrix whose rows are embedded observations.
a vector containing betas used in perplexity matching.
name of the algorithm.
Kisung You
hinton_stochastic_2003Rdimtools
## load iris data data(iris) set.seed(100) subid = sample(1:150,50) X = as.matrix(iris[subid,1:4]) label = as.factor(iris[subid,5]) ## try different perplexity values out1 <- do.sne(X, perplexity=5) out2 <- do.sne(X, perplexity=25) out3 <- do.sne(X, perplexity=50) ## Visualize two comparisons opar <- par(no.readonly=TRUE) par(mfrow=c(1,3)) plot(out1$Y, pch=19, col=label, main="perplexity=5") plot(out2$Y, pch=19, col=label, main="perplexity=25") plot(out3$Y, pch=19, col=label, main="perplexity=50") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.