View source: R/special_grassmann_optmacg.R
grassmann.optmacg | R Documentation |
For a function f : Gr(k,p) \rightarrow \mathbf{R}, find the minimizer and the attained minimum value with estimation of distribution algorithm using MACG distribution.
grassmann.optmacg(func, p, k, ...)
func |
a function to be minimized. |
p |
dimension parameter as in Gr(k,p). |
k |
dimension parameter as in Gr(k,p). |
... |
extra parameters including
|
a named list containing:
minimized function value.
a (p\times k) matrix that attains the cost
.
#------------------------------------------------------------------- # Optimization for Eigen-Decomposition # # Given (5x5) covariance matrix S, eigendecomposition is can be # considered as an optimization on Grassmann manifold. Here, # we are trying to find top 3 eigenvalues and compare. #------------------------------------------------------------------- ## PREPARE A = cov(matrix(rnorm(100*5), ncol=5)) # define covariance myfunc <- function(p){ # cost function to minimize return(sum(-diag(t(p)%*%A%*%p))) } ## SOLVE THE OPTIMIZATION PROBLEM Aout = grassmann.optmacg(myfunc, p=5, k=3, popsize=100, n.start=30) ## COMPUTE EIGENVALUES # 1. USE SOLUTIONS TO THE ABOVE OPTIMIZATION abase = Aout$solution eig3sol = sort(diag(t(abase)%*%A%*%abase), decreasing=TRUE) # 2. USE BASIC 'EIGEN' FUNCTION eig3dec = sort(eigen(A)$values, decreasing=TRUE)[1:3] ## VISUALIZE opar <- par(no.readonly=TRUE) yran = c(min(min(eig3sol),min(eig3dec))*0.95, max(max(eig3sol),max(eig3dec))*1.05) plot(1:3, eig3sol, type="b", col="red", pch=19, ylim=yran, xlab="index", ylab="eigenvalue", main="compare top 3 eigenvalues") lines(1:3, eig3dec, type="b", col="blue", pch=19) legend(1.55, max(yran), legend=c("optimization","decomposition"), col=c("red","blue"), lty=rep(1,2), pch=19) par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.