View source: R/clustering_sc05Z.R
riem.sc05Z | R Documentation |
Zelnik-Manor and Perona proposed a method to define a set of data-driven
bandwidth parameters where σ_i is the distance from a point x_i to its nnbd
-th
nearest neighbor. Then the affinity matrix is defined as
A_{ij} = \exp(-d(x_i, d_j)^2 / σ_i σ_j)
and the standard
spectral clustering of Ng, Jordan, and Weiss (riem.scNJW
) is applied.
riem.sc05Z(riemobj, k = 2, nnbd = 7, geometry = c("intrinsic", "extrinsic"))
riemobj |
a S3 |
k |
the number of clusters (default: 2). |
nnbd |
neighborhood size to define data-driven bandwidth parameter (default: 7). |
geometry |
(case-insensitive) name of geometry; either geodesic ( |
a named list containing
a length-N vector of class labels (from 1:k).
eigenvalues of the graph laplacian's spectral decomposition.
an (N\times k) low-dimensional embedding.
Zelnik-manor L, Perona P (2005). "Self-Tuning Spectral Clustering." In Saul LK, Weiss Y, Bottou L (eds.), Advances in Neural Information Processing Systems 17, 1601–1608. MIT Press.
#------------------------------------------------------------------- # Example on Sphere : a dataset with three types # # class 1 : 10 perturbed data points near (1,0,0) on S^2 in R^3 # class 2 : 10 perturbed data points near (0,1,0) on S^2 in R^3 # class 3 : 10 perturbed data points near (0,0,1) on S^2 in R^3 #------------------------------------------------------------------- ## GENERATE DATA mydata = list() for (i in 1:10){ tgt = c(1, stats::rnorm(2, sd=0.1)) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } for (i in 11:20){ tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1)) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } for (i in 21:30){ tgt = c(stats::rnorm(2, sd=0.1), 1) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } myriem = wrap.sphere(mydata) lab = rep(c(1,2,3), each=10) ## CLUSTERING WITH DIFFERENT K VALUES cl2 = riem.sc05Z(myriem, k=2)$cluster cl3 = riem.sc05Z(myriem, k=3)$cluster cl4 = riem.sc05Z(myriem, k=4)$cluster ## MDS FOR VISUALIZATION mds2d = riem.mds(myriem, ndim=2)$embed ## VISUALIZE opar <- par(no.readonly=TRUE) par(mfrow=c(1,4), pty="s") plot(mds2d, col=lab, pch=19, main="true label") plot(mds2d, col=cl2, pch=19, main="riem.sc05Z: k=2") plot(mds2d, col=cl3, pch=19, main="riem.sc05Z: k=3") plot(mds2d, col=cl4, pch=19, main="riem.sc05Z: k=4") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.