View source: R/clustering_kmeans.R
riem.kmeans | R Documentation |
Given N observations X_1, X_2, …, X_N \in \mathcal{M}, perform k-means clustering by minimizing within-cluster sum of squares (WCSS). Since the problem is NP-hard and sensitive to the initialization, we provide an option with multiple starts and return the best result with respect to WCSS.
riem.kmeans(riemobj, k = 2, geometry = c("intrinsic", "extrinsic"), ...)
riemobj |
a S3 |
k |
the number of clusters. |
geometry |
(case-insensitive) name of geometry; either geodesic ( |
... |
extra parameters including
|
a named list containing
a length-N vector of class labels (from 1:k).
a 3d array where each slice along 3rd dimension is a matrix representation of class mean.
within-cluster sum of squares (WCSS).
lloyd_least_1982Riemann
\insertRefmacqueen_methods_1967Riemann
riem.kmeanspp
#------------------------------------------------------------------- # Example on Sphere : a dataset with three types # # class 1 : 10 perturbed data points near (1,0,0) on S^2 in R^3 # class 2 : 10 perturbed data points near (0,1,0) on S^2 in R^3 # class 3 : 10 perturbed data points near (0,0,1) on S^2 in R^3 #------------------------------------------------------------------- ## GENERATE DATA mydata = list() for (i in 1:10){ tgt = c(1, stats::rnorm(2, sd=0.1)) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } for (i in 11:20){ tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1)) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } for (i in 21:30){ tgt = c(stats::rnorm(2, sd=0.1), 1) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } myriem = wrap.sphere(mydata) mylabs = rep(c(1,2,3), each=10) ## K-MEANS WITH K=2,3,4 clust2 = riem.kmeans(myriem, k=2) clust3 = riem.kmeans(myriem, k=3) clust4 = riem.kmeans(myriem, k=4) ## MDS FOR VISUALIZATION mds2d = riem.mds(myriem, ndim=2)$embed ## VISUALIZE opar <- par(no.readonly=TRUE) par(mfrow=c(2,2), pty="s") plot(mds2d, pch=19, main="true label", col=mylabs) plot(mds2d, pch=19, main="K=2", col=clust2$cluster) plot(mds2d, pch=19, main="K=3", col=clust3$cluster) plot(mds2d, pch=19, main="K=4", col=clust4$cluster) par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.