View source: R/visualization_phate.R
riem.phate | R Documentation |
PHATE is a nonlinear manifold learning method that is specifically targeted at improving diffusion maps by incorporating data-adaptive kernel construction, detection of optimal time scale, and information-theoretic metric measures.
riem.phate(riemobj, ndim = 2, geometry = c("intrinsic", "extrinsic"), ...)
riemobj |
a S3 |
ndim |
an integer-valued target dimension (default: 2). |
geometry |
(case-insensitive) name of geometry; either geodesic ( |
... |
extra parameters for
|
a named list containing
an (N\times ndim) matrix whose rows are embedded observations.
moon_visualizing_2019Riemann
#------------------------------------------------------------------- # Example on Sphere : a dataset with three types # # 10 perturbed data points near (1,0,0) on S^2 in R^3 # 10 perturbed data points near (0,1,0) on S^2 in R^3 # 10 perturbed data points near (0,0,1) on S^2 in R^3 #------------------------------------------------------------------- ## GENERATE DATA mydata = list() for (i in 1:10){ tgt = c(1, stats::rnorm(2, sd=0.1)) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } for (i in 11:20){ tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1)) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } for (i in 21:30){ tgt = c(stats::rnorm(2, sd=0.1), 1) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } myriem = wrap.sphere(mydata) mylabs = rep(c(1,2,3), each=10) ## PHATE EMBEDDING WITH LOG & SQRT POTENTIAL phate_log = riem.phate(myriem, potential="log")$embed phate_sqrt = riem.phate(myriem, potential="sqrt")$embed embed_mds = riem.mds(myriem)$embed ## VISUALIZE opar = par(no.readonly=TRUE) par(mfrow=c(1,3), pty="s") plot(embed_mds, col=mylabs, pch=19, main="MDS" ) plot(phate_log, col=mylabs, pch=19, main="PHATE+Log") plot(phate_sqrt, col=mylabs, pch=19, main="PHATE+Sqrt") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.