View source: R/visualization_kpca.R
riem.kpca | R Documentation |
Although the method of Kernel Principal Component Analysis (KPCA) was originally developed to visualize non-linearly distributed data in Euclidean space, we graft this to the case for manifolds where extrinsic geometry is explicitly available. The algorithm uses Gaussian kernel with
K(X_i, X_j) = \exp≤ft( - \frac{d^2 (X_i, X_j)}{2 σ^2} \right )
where σ is a bandwidth parameter and d(\cdot, \cdot) is an extrinsic distance defined on a specific manifold.
riem.kpca(riemobj, ndim = 2, sigma = 1)
riemobj |
a S3 |
ndim |
an integer-valued target dimension (default: 2). |
sigma |
the bandwidth parameter (default: 1). |
a named list containing
an (N\times ndim) matrix whose rows are embedded observations.
a length-N vector of eigenvalues from kernelized covariance matrix.
scholkopf_kernel_1997Riemann
#------------------------------------------------------------------- # Example for Gorilla Skull Data : 'gorilla' #------------------------------------------------------------------- ## PREPARE THE DATA # Aggregate two classes into one set data(gorilla) mygorilla = array(0,c(8,2,59)) for (i in 1:29){ mygorilla[,,i] = gorilla$male[,,i] } for (i in 30:59){ mygorilla[,,i] = gorilla$female[,,i-29] } gor.riem = wrap.landmark(mygorilla) gor.labs = c(rep("red",29), rep("blue",30)) ## APPLY KPCA WITH DIFFERENT KERNEL BANDWIDTHS kpca1 = riem.kpca(gor.riem, sigma=0.01) kpca2 = riem.kpca(gor.riem, sigma=1) kpca3 = riem.kpca(gor.riem, sigma=100) ## VISUALIZE opar <- par(no.readonly=TRUE) par(mfrow=c(1,3), pty="s") plot(kpca1$embed, pch=19, col=gor.labs, main="sigma=1/100") plot(kpca2$embed, pch=19, col=gor.labs, main="sigma=1") plot(kpca3$embed, pch=19, col=gor.labs, main="sigma=100") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.