View source: R/visualization_kpca.R
| riem.kpca | R Documentation |
Although the method of Kernel Principal Component Analysis (KPCA) was originally developed to visualize non-linearly distributed data in Euclidean space, we graft this to the case for manifolds where extrinsic geometry is explicitly available. The algorithm uses Gaussian kernel with
K(X_i, X_j) = \exp≤ft( - \frac{d^2 (X_i, X_j)}{2 σ^2} \right )
where σ is a bandwidth parameter and d(\cdot, \cdot) is an extrinsic distance defined on a specific manifold.
riem.kpca(riemobj, ndim = 2, sigma = 1)
riemobj |
a S3 |
ndim |
an integer-valued target dimension (default: 2). |
sigma |
the bandwidth parameter (default: 1). |
a named list containing
an (N\times ndim) matrix whose rows are embedded observations.
a length-N vector of eigenvalues from kernelized covariance matrix.
scholkopf_kernel_1997Riemann
#-------------------------------------------------------------------
# Example for Gorilla Skull Data : 'gorilla'
#-------------------------------------------------------------------
## PREPARE THE DATA
# Aggregate two classes into one set
data(gorilla)
mygorilla = array(0,c(8,2,59))
for (i in 1:29){
mygorilla[,,i] = gorilla$male[,,i]
}
for (i in 30:59){
mygorilla[,,i] = gorilla$female[,,i-29]
}
gor.riem = wrap.landmark(mygorilla)
gor.labs = c(rep("red",29), rep("blue",30))
## APPLY KPCA WITH DIFFERENT KERNEL BANDWIDTHS
kpca1 = riem.kpca(gor.riem, sigma=0.01)
kpca2 = riem.kpca(gor.riem, sigma=1)
kpca3 = riem.kpca(gor.riem, sigma=100)
## VISUALIZE
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3), pty="s")
plot(kpca1$embed, pch=19, col=gor.labs, main="sigma=1/100")
plot(kpca2$embed, pch=19, col=gor.labs, main="sigma=1")
plot(kpca3$embed, pch=19, col=gor.labs, main="sigma=100")
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.