| riem.seb | R Documentation |
Given N observations X_1, X_2, …, X_N \in \mathcal{M}, find the smallest enclosing ball.
riem.seb(riemobj, method = c("aa2013"), ...)
riemobj |
a S3 |
method |
(case-insensitive) name of the algorithm to be used as follows;
|
... |
extra parameters including
|
a named list containing
a matrix on \mathcal{M} that minimizes the radius.
the minimal radius with respect to the center.
badoiu_smaller_2003Riemann
\insertRefarnaudon_approximating_2013Riemann
#-------------------------------------------------------------------
# Euclidean Example : samples from Standard Normal in R^2
#-------------------------------------------------------------------
## GENERATE 25 OBSERVATIONS FROM N(0,I)
ndata = 25
mymats = array(0,c(ndata, 2))
mydata = list()
for (i in 1:ndata){
mydata[[i]] = stats::rnorm(2)
mymats[i,] = mydata[[i]]
}
myriem = wrap.euclidean(mydata)
## COMPUTE
sebobj = riem.seb(myriem)
center = as.vector(sebobj$center)
radius = sebobj$radius
## VISUALIZE
# 1. prepare the circle for drawing
theta = seq(from=0, to=2*pi, length.out=100)
coords = radius*cbind(cos(theta), sin(theta))
coords = coords + matrix(rep(center, each=100), ncol=2)
# 2. draw
opar <- par(no.readonly=TRUE)
par(pty="s")
plot(coords, type="l", lwd=2, col="red",
main="Euclidean SEB", xlab="x", ylab="y")
points(mymats, pch=19) # data
points(center[1], center[2], pch=19, col="blue") # center
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.