View source: R/clustering_hclust.R
riem.hclust | R Documentation |
Given N observations X_1, X_2, …, X_M \in \mathcal{M}, perform hierarchical agglomerative clustering with fastcluster package's implementation.
riem.hclust( riemobj, geometry = c("intrinsic", "extrinsic"), method = c("single", "complete", "average", "mcquitty", "ward.D", "ward.D2", "centroid", "median"), members = NULL )
riemobj |
a S3 |
geometry |
(case-insensitive) name of geometry; either geodesic ( |
method |
agglomeration method to be used. This must be one of |
members |
|
an object of class hclust
. See hclust
for details.
mullner_fastcluster_2013Riemann
#------------------------------------------------------------------- # Example on Sphere : a dataset with three types # # class 1 : 10 perturbed data points near (1,0,0) on S^2 in R^3 # class 2 : 10 perturbed data points near (0,1,0) on S^2 in R^3 # class 3 : 10 perturbed data points near (0,0,1) on S^2 in R^3 #------------------------------------------------------------------- ## GENERATE DATA mydata = list() for (i in 1:10){ tgt = c(1, stats::rnorm(2, sd=0.1)) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } for (i in 11:20){ tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1)) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } for (i in 21:30){ tgt = c(stats::rnorm(2, sd=0.1), 1) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } myriem = wrap.sphere(mydata) ## COMPUTE SINGLE AND COMPLETE LINKAGE hc.sing <- riem.hclust(myriem, method="single") hc.comp <- riem.hclust(myriem, method="complete") ## VISUALIZE opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(hc.sing, main="single linkage") plot(hc.comp, main="complete linkage") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.