View source: R/learning_rmml.R
| riem.rmml | R Documentation |
Given N observations X_1, X_2, …, X_N \in \mathcal{M} and
corresponding label information, riem.rmml computes pairwise distance of data under Riemannian Manifold Metric Learning
(RMML) framework based on equivariant embedding. When the number of data points
is not sufficient, an inverse of scatter matrix does not exist analytically so
the small regularization parameter λ is recommended with default value of λ=0.1.
riem.rmml(riemobj, label, lambda = 0.1, as.dist = FALSE)
riemobj |
a S3 |
label |
a length-N vector of class labels. |
lambda |
regularization parameter. If λ ≤q 0, no regularization is applied. |
as.dist |
logical; if |
a S3 dist object or (N\times N) symmetric matrix of pairwise distances according to as.dist parameter.
zhu_generalized_2018Riemann
#-------------------------------------------------------------------
# Distance between Two Classes of SPD Matrices
#
# Class 1 : Empirical Covariance from Standard Normal Distribution
# Class 2 : Empirical Covariance from Perturbed 'iris' dataset
#-------------------------------------------------------------------
## DATA GENERATION
data(iris)
ndata = 10
mydata = list()
for (i in 1:ndata){
mydata[[i]] = stats::cov(matrix(rnorm(100*4),ncol=4))
}
for (i in (ndata+1):(2*ndata)){
tmpdata = as.matrix(iris[,1:4]) + matrix(rnorm(150*4,sd=0.5),ncol=4)
mydata[[i]] = stats::cov(tmpdata)
}
myriem = wrap.spd(mydata)
mylabs = rep(c(1,2), each=ndata)
## COMPUTE GEODESIC AND RMML PAIRWISE DISTANCE
pdgeo = riem.pdist(myriem)
pdmdl = riem.rmml(myriem, label=mylabs)
## VISUALIZE
opar = par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
image(pdgeo[,(2*ndata):1], main="geodesic distance", axes=FALSE)
image(pdmdl[,(2*ndata):1], main="RMML distance", axes=FALSE)
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.