riem.knn | R Documentation |
Given N observations X_1, X_2, …, X_N \in \mathcal{M},
riem.knn
constructs k-nearest neighbors.
riem.knn(riemobj, k = 2, geometry = c("intrinsic", "extrinsic"))
riemobj |
a S3 |
k |
the number of neighbors to find. |
geometry |
(case-insensitive) name of geometry; either geodesic ( |
a named list containing
an (N \times k) neighborhood index matrix.
an (N\times k) distances from a point to its neighbors.
#------------------------------------------------------------------- # Example on Sphere : a dataset with three types # # * 10 perturbed data points near (1,0,0) on S^2 in R^3 # * 10 perturbed data points near (0,1,0) on S^2 in R^3 # * 10 perturbed data points near (0,0,1) on S^2 in R^3 #------------------------------------------------------------------- ## GENERATE DATA mydata = list() for (i in 1:10){ tgt = c(1, stats::rnorm(2, sd=0.1)) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } for (i in 11:20){ tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1)) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } for (i in 21:30){ tgt = c(stats::rnorm(2, sd=0.1), 1) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } myriem = wrap.sphere(mydata) mylabs = rep(c(2,3,4), each=10) ## K-NN CONSTRUCTION WITH K=5 & K=10 knn1 = riem.knn(myriem, k=5) knn2 = riem.knn(myriem, k=10) ## MDS FOR VISUALIZATION embed2 = riem.mds(myriem, ndim=2)$embed ## VISUALIZE opar <- par(no.readonly=TRUE) par(mfrow=c(1,2), pty="s") plot(embed2, pch=19, main="knn with k=4", col=mylabs) for (i in 1:30){ for (j in 1:5){ lines(embed2[c(i,knn1$nn.idx[i,j]),]) } } plot(embed2, pch=19, main="knn with k=8", col=mylabs) for (i in 1:30){ for (j in 1:10){ lines(embed2[c(i,knn2$nn.idx[i,j]),]) } } par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.