Nothing
#' Solve Spatial Convex Clustering problem for missing data
#'
#' @param X A subject (n) by variable (p) matrix; the data
#' @param w A vector of length p-1; weights for clustering
#' @param gamma A positive scalar; regularization parameter
#' @param nu A positive scalar; augmented Lagrangian paramter
#' @param verbose Logical; should messages be printed?
#' @param tol.base A small positive scalar; convergence tolerance for base SpaCC problem.
#' @param tol.miss A small positive scalar; convergence tolerance for missing data problem.
#' @param max.iter.base A positive integer; maximum number of iterations for base SpaCC problem
#' @param max.iter.miss A positive integer; maximum number of iterations for missing data problem
#' @param Uinit An n by p matrix; initial value for U
#' @param Vinit An n by p-1 matrix; initial value for V
#' @param Laminit An n by p-1 matrix; initial value for Lam
#' @return A list with elements U,V, and Lam
#' @export
#' @examples
#' library(dplyr)
#' library(tidyr)
#' data("methy")
#' methy <- methy[1:20,1:10]
#' Coordinates <- methy$Genomic_Coordinate
#' methy %>%
#' tbl_df() %>%
#' select(-Chromosome,-Genomic_Coordinate) %>%
#' gather(Subject,Value,-ProbeID) %>%
#' spread(ProbeID,Value) -> X
#' SubjectLabels <- X$Subject
#' X <- X[,-1] %>% as.matrix()
#' X[1:5,1:5]
#' nsubj <- nrow(X)
#' nprobes <- ncol(X)
#' nweights <- choose(nprobes,2)
#' diff.vals <- diff(Coordinates)
#' too.far <- diff.vals > 20000
#' sig = 1/5e3
#' w.values <- exp(-sig*diff.vals)
#' w.values[too.far] = 0
#'
#' verbose=TRUE
#' tol.base = 1e-4
#' tol.miss = 1e-4
#' max.iter.base=5000
#' max.iter.miss=500
#' bo <-t(scale(t(X),center=TRUE,scale=FALSE))
#' bo[is.na(bo)] <- mean(bo,na.rm=TRUE)
#' best.gam = 1
#' Sol <- SpaCC_Missing(t(scale(t(X),center=TRUE,scale=FALSE)),
#' w.values,
#' gamma = best.gam,
#' nu=1/nsubj,
#' verbose=TRUE,
#' tol.base=tol.base,
#' tol.miss=tol.miss,
#' max.iter.base=max.iter.base,
#' max.iter.miss=max.iter.miss,
#' bo,
#' t(diff(t(bo))),
#' t(diff(t(bo))))
SpaCC_Missing <- function(X,w,gamma,nu=1/nrow(X),verbose=FALSE,tol.base=1e-4,tol.miss=1e-4,max.iter.base=5000,max.iter.miss=500,Uinit,Vinit,Laminit) {
n <- nrow(X)
p <- ncol(X)
miss.inds <- is.na(X)
Unew <- Uinit
Vnew <- Vinit
Lamnew <- Laminit
err = 1
iter = 0
while(err > tol.miss & (iter < max.iter.miss)) {
iter = iter +1
Uold <- Unew
Vold <- Vnew
Lamold <- Lamnew
Tnew <- X
Tnew[miss.inds] <- Unew[miss.inds]
sol <- SpaCC(Tnew,w,gamma,nu,verbose,tol.base,max.iter.base,Uold,Vold,Lamold)
Unew <- sol[[1]]
Vnew <- sol[[2]]
Lamnew <- sol[[3]]
err <- norm(Unew - Uold,type = 'f')/norm(Uold,type='f')
}
if(verbose){
print(paste("Miss Iter",iter))
print(paste("Missing Error:",err))
}
list(U=Unew,V=Vnew,Lam=Lamnew)
}
#' Solve Spatial Convex Clustering problem for path of regularization parameters
#'
#' @param X A subject (n) by variable (p) matrix; the data
#' @param w A vector of length p-1; weights for clustering
#' @param gamma.seq A vector of positive scalars; regularization parameter sequence
#' @param nu A positive scalar; augmented Lagrangian paramter
#' @param verbose Logical; should messages be printed?
#' @param tol.base A small positive scalar; convergence tolerance for base SpaCC problem.
#' @param tol.miss A small positive scalar; convergence tolerance for missing data problem.
#' @param max.iter.base A positive integer; maximum number of iterations for base SpaCC problem
#' @param max.iter.miss A positive integer; maximum number of iterations for missing data problem
#' @return A list with elements UPath, VPath, LamPath, and gamma.seq
#' @export
#' @examples
#' NULL
SpaCC_Path <- function(X,w,gamma.seq,nu=1/nrow(X),verbose=FALSE,tol.base=1e-4,tol.miss=1e-4,max.iter.base=5000,max.iter.miss=500){
n <- nrow(X)
p <- ncol(X)
gamma.seq <- sort(gamma.seq,decreasing = TRUE)
ngam <- length(gamma.seq)
bo <- X
bo[is.na(bo)] = mean(bo,na.rm=TRUE)
Uinit <- bo
Vinit <- t(diff(t(bo)))
Laminit <- Vinit
UPath <- array(0,dim=c(n,p,ngam))
VPath <- array(0,dim=c(n,p-1,ngam))
LamPath <- array(0,dim=c(n,p-1,ngam))
iter = 0
for(gam in gamma.seq){
iter = iter +1
print(paste('gamma iter is:',iter))
sol <- SpaCC_Missing(X,w,gam,nu,verbose,tol.base,tol.miss,max.iter.base,max.iter.miss,
Uinit,Vinit,Laminit)
UPath[,,iter] <- sol$U
VPath[,,iter] <- sol$V
LamPath[,,iter] <- sol$Lam
}
list(UPath=UPath,VPath=VPath,LamPath=LamPath,gamma.seq=sort(gamma.seq,decreasing = TRUE))
}
#' Solve Spatial Convex Clustering problem for path of regularization parameters in parallel
#'
#' @param X A subject (n) by variable (p) matrix; the data
#' @param w A vector of length p-1; weights for clustering
#' @param gamma.seq A vector of positive scalars; regularization parameter sequence
#' @param nu A positive scalar; augmented Lagrangian paramter
#' @param verbose Logical; should messages be printed?
#' @param tol.base A small positive scalar; convergence tolerance for base SpaCC problem.
#' @param tol.miss A small positive scalar; convergence tolerance for missing data problem.
#' @param max.iter.base A positive integer; maximum number of iterations for base SpaCC problem
#' @param max.iter.miss A positive integer; maximum number of iterations for missing data problem
#' @param ncores A positive integer; number of cores to use
#' @return A list with elements UPath, VPath, LamPath, and gamma.seq
#' @export
#' @examples
#' NULL
SpaCC_Path_Parallel <- function(X,w,gamma.seq,nu=1/nrow(X),verbose=FALSE,tol.base=1e-4,tol.miss=1e-4,max.iter.base=5000,max.iter.miss=500,ncores=2){
n <- nrow(X)
p <- nrow(X)
gamma.seq <- sort(gamma.seq,decreasing=TRUE)
ChromBlocks <- GetParBlocks(X,w)
BlockList <- ChromBlocks$Blocks
wList <- ChromBlocks$weights
wIndex <- ChromBlocks$weight.index
nblocks <- length(BlockList)
print(paste("Number of Blocks is", nblocks))
ngam <- length(gamma.seq)
if(nblocks == 1) {
ret.me <- SpaCC_Path(X,wList[[1]], gamma.seq, nu, verbose=verbose,tol.base=tol.base,tol.miss=tol.miss,max.iter.base=max.iter.base,max.iter.miss=max.iter.miss)
UPath <- ret.me$UPath
VPath <- ret.me$VPath
LamPath <- ret.me$VPath
} else{
weight.sum <- unlist(lapply(wList, sum))
zero.logic <- weight.sum == 0
isolated.probes <- lapply(wIndex[zero.logic], function(x){
x[1]
})
full.path <- mcmapply(SpaCC_Path,
BlockList[!zero.logic],
wList[!zero.logic],
rep(list(gamma.seq),times=sum(!zero.logic)),
nu,
verbose,
tol.base,
tol.miss,
max.iter.base,
max.iter.miss,
mc.cores = ncores,
SIMPLIFY = FALSE,
mc.preschedule=FALSE)
UList <- list()
UList[!zero.logic] <- lapply(full.path, function(SpaCCPathResult){
SpaCCPathResult$UPath
})
UList[zero.logic] <- lapply(isolated.probes,function(prb){
na.inds <- is.na(X[,prb])
mean.val <- mean(X[,prb],na.rm=TRUE)
iso.prb <- X[,prb]
iso.prb[na.inds] = mean.val
ret.me <- array(iso.prb,dim=c(n,1,ngam))
ret.me
})
UPath <- abind(UList,along=2)
VList <- list()
non.iso.ind = 1
next.add = 1
for(vlogic in seq_along(zero.logic)) {
if(!zero.logic[vlogic]){
VList[[next.add]] <- full.path[[non.iso.ind]][[2]]
next.add = next.add +1
non.iso.ind = non.iso.ind + 1
}
if(vlogic != length(zero.logic)){
VList[[next.add]] <- array(rep(1,times=n),dim=c(n,1,ngam))
next.add = next.add +1
}
}
VPath <- abind(VList,along=2)
LamList <- list()
non.iso.ind = 1
next.add = 1
for(vlogic in seq_along(zero.logic)) {
if(!zero.logic[vlogic]){
LamList[[next.add]] <- full.path[[non.iso.ind]][[3]]
next.add = next.add +1
non.iso.ind = non.iso.ind + 1
}
if(vlogic != length(zero.logic)){
LamList[[next.add]] <- array(rep(1,times=n),dim=c(n,1,ngam))
next.add = next.add +1
}
}
LamPath <- abind(LamList,along=2)
rm(full.path)
gc()
}
list(UPath = UPath,VPath = VPath,LamPath = LamPath,gamma.seq=gamma.seq)
}
#' Perform Cross Validation to select gamma/sparsity level
#'
#' @param X A subject (n) by variable (p) matrix; the data
#' @param w A vector of length p-1; weights for clustering
#' @param gamma.seq A vector of positive scalars; regularization parameter sequence
#' @param nfolds A positive scalar; number of cross validation folds
#' @param nu A positive scalar; augmented Lagrangian paramter
#' @param verbose Logical; should messages be printed?
#' @param tol.base A small positive scalar; convergence tolerance for base SpaCC problem.
#' @param tol.miss A small positive scalar; convergence tolerance for missing data problem.
#' @param max.iter.base A positive integer; maximum number of iterations for base SpaCC problem
#' @param max.iter.miss A positive integer; maximum number of iterations for missing data problem
#' @param parallel A logical; should CV paths be done in parallel?
#' @param frac A positive scalar between 0 and 1; fraction of hold out set to utilize
#' @return A list with elements: ErrMat - a length(gamma.seq) by nfold matrix containing
#' error on out of fold data; SpMat - a length(gamma.seq) by nfold matrix containing sparsity
#' levels; gamma.seq - original gamma.seq sorted largest to smallest
#' @export
#' @examples
#'library(dplyr)
#'library(tidyr)
#'data("methy")
#'methy <- methy[1:20,1:10]
#'Coordinates <- methy$Genomic_Coordinate
#'methy %>%
#' tbl_df() %>%
#' select(-Chromosome,-Genomic_Coordinate) %>%
#' gather(Subject,Value,-ProbeID) %>%
#' spread(ProbeID,Value) -> X
#'SubjectLabels <- X$Subject
#'X <- X[,-1] %>% as.matrix()
#'nsubj <- nrow(X)
#'nprobes <- ncol(X)
#'nweights <- choose(nprobes,2)
#'diff.vals <- diff(Coordinates)
#'too.far <- diff.vals > 20000
#'sig = 1/5e3
#'w.values <- exp(-sig*diff.vals)
#'w.values[too.far] = 0
#'
#'verbose=TRUE
#'tol.base = 1e-4
#'tol.miss = 1e-4
#'max.iter.base=5000
#'max.iter.miss=500
#'ngam = 20
#'gamma.seq <- exp(seq(log(1e-1),log(1e1),length.out=ngam))
#'CVRes <- SpaCC_CV(X=t(scale(t(X),center=TRUE,scale=FALSE)),
#' w=w.values,
#' gamma.seq=gamma.seq,
#' nfolds=5,
#' nu=1/nsubj,
#' verbose=TRUE,
#' tol.base=tol.base,
#' tol.miss=tol.miss,
#' max.iter.base=max.iter.base,
#' max.iter.miss=max.iter.miss,
#' parallel=FALSE,frac = 1)
SpaCC_CV <- function(X,w,gamma.seq,nfolds=5,nu=1/nrow(X),verbose=FALSE,tol.base=1e-4,tol.miss=1e-4,max.iter.base=5000,max.iter.miss=500,parallel=FALSE,frac=1) {
Subject <- Value <- Cluster <- Probe <- MeanValue <- NULL
if(parallel){
Path_Function <- SpaCC_Path_Parallel
} else {
Path_Function <- SpaCC_Path
}
n <- nrow(X)
p <- ncol(X)
gamma.seq <- sort(gamma.seq,decreasing = TRUE)
ngam <- length(gamma.seq)
miss.inds <- is.na(X)
non.miss.inds <- which(!miss.inds)
n.non.miss <- length(non.miss.inds)
folds <- sample(1:nfolds,size=n.non.miss,replace = TRUE)
ErrMat <- matrix(0,nrow=ngam,ncol=nfolds)
SpMat <- matrix(0,nrow=ngam,ncol=nfolds)
for(fold in 1:nfolds){
print(paste("Fold #",fold,"of",nfolds))
X.fold <- X
out.inds <- non.miss.inds[folds==fold]
out.inds <- sample(out.inds,size=floor(frac*length(out.inds)),replace=FALSE)
X.fold[out.inds] <- NA
print(paste("Solving Path Problem",length(out.inds)))
Path <- Path_Function(X=X.fold,w=w,gamma.seq=gamma.seq,nu=nu,verbose=verbose,tol.base=tol.base,tol.miss=tol.miss,max.iter.base=max.iter.base,max.iter.miss=max.iter.miss)
print("Computing Error")
for(gam.iter in seq_along(gamma.seq)){
VThreshed <- Path$VPath[,,gam.iter]
VThreshed[abs(VThreshed)<sqrt(log(p)/n)*sd(X.fold,na.rm=TRUE)] = 0
clustsThreshed <- GetClusters(VThreshed)
NEstRegion <- length(unique(clustsThreshed$cluster))
NEstRegion
SpMat[gam.iter,fold] = NEstRegion
X.tmp <- X.fold
X.tmp[is.na(X.fold)] <- Path$UPath[,,gam.iter][is.na(X.fold)]
#t(X.fold) %>%
t(X.tmp) %>%
as.data.frame() %>%
tbl_df() %>%
mutate(
Cluster = clustsThreshed$cluster) %>%
gather(Subject,Value,-Cluster) %>%
group_by(Subject,Cluster) %>%
summarise(
MeanValue = mean(Value,na.rm=TRUE)
) -> tmp1
#t(X.fold) %>%
t(X.tmp) %>%
as.data.frame() %>%
tbl_df() %>%
mutate(
Cluster = clustsThreshed$cluster,
Probe = 1:ncol(X.fold)) %>%
gather(Subject,Value,-Cluster,-Probe) -> tmp2
tmp2 %>%
left_join(tmp1,by=c('Subject','Cluster')) %>%
select(-Value,-Cluster) %>%
spread(Subject,MeanValue) %>%
select(-Probe) %>%
as.matrix() %>% t() -> tmp
ErrMat[gam.iter,fold] = mean( (tmp[out.inds] - X[out.inds]) ^2,na.rm=TRUE)
}
rm(Path)
gc()
}
list(ErrMat=ErrMat,gamma.seq=gamma.seq,SpMat=SpMat)
}
#' Function to compute blocks for parallization; should not be called directly
#'
#' @param X An n by p data matrix
#' @param w A vector of positive scalars of length p-1
#' @export
#' @examples
#' NULL
GetParBlocks <- function(X,w) {
X.n <- nrow(X)
X.p <- ncol(X)
BlockList <- list()
wList <- list()
wIndex <- list()
w.zinds <- which(w == 0)
if(sum(w.zinds) == 0) {
ret.me <- list(Blocks=list(X),
weights=list(w),
weight.index=list(1:length(w)))
} else {
start.ind = 1
for(blk.ind in seq_along(w.zinds)) {
z.ind <- w.zinds[blk.ind]
BlockList[[blk.ind]] <- as.matrix(X[,start.ind:z.ind])
wList[[blk.ind]] <- w[start.ind:(z.ind - 1)]
wIndex[[blk.ind]] <- start.ind:(z.ind - 1)
start.ind = z.ind + 1
}
BlockList[[blk.ind + 1]] = as.matrix(X[,start.ind:X.p])
wList[[blk.ind + 1]] = w[start.ind:length(w)]
wIndex[[blk.ind + 1]] = start.ind:length(w)
wList[[blk.ind+1]][is.na(wList[[blk.ind+1]])] = 0
ret.me <- list(Blocks=BlockList,
weights=wList,
weight.index =wIndex)
}
return(ret.me)
}
#' Plot subjects' copy number data with cluster means overlayed for a single chromosome
#'
#' @param Location A vector of length p with chromosomal locations
#' @param X A variable (p) by subject (n) data matrix
#' @param Cluster A vector of length p with cluster labels
#' @param NSubj A positve integer; number of randomly selected subjects to plot.
#' @param lowery,uppery Scalars; limits for y-axis
#' @importFrom stats sd
#' @importFrom utils head
#' @import parallel
#' @import abind
#' @import tidyr
#' @import dplyr
#' @import ggplot2
#' @export
#' @examples
#' NULL
CNVPlotSeriesMeans <- function(Location, X, Cluster,NSubj=3,lowery=-1,uppery=1) {
Subject <- PrbMeasure <- MeanMeasure <- NULL
X <- X[,sample(1:(ncol(X)),size=NSubj)]
SimMatClust <- cbind.data.frame(Location, X, Cluster)
NSubj <- ncol(X)
names(SimMatClust) <-c(
'Location',
paste('Subject',1:NSubj, sep=''),
'Cluster')
rhs <- SimMatClust %>%
gather(Subject,
PrbMeasure,
-Location,
-Cluster) %>%
group_by(Cluster, Subject) %>%
summarise(
MeanMeasure = mean(PrbMeasure,na.rm=TRUE),
nProbe = n()
)
lhs <- SimMatClust %>%
gather(Subject,
PrbMeasure,
-Location,
-Cluster)
inner_join(lhs,rhs,by=c('Subject','Cluster')) %>%
ggplot(aes(x=Location,y=PrbMeasure)) +
geom_point() +
geom_line(aes(x=Location,y=MeanMeasure,
color=as.factor(Cluster)),size=I(2)) +
facet_wrap(~Subject,nrow=NSubj) +
scale_y_continuous(limits=c(lowery,uppery)) +
guides(color=FALSE) +
ylab('Copy Number Variation: Log2Ratio') +
xlab('Genomic Location')
}
#' Compute Clusters from fusions
#'
#' @param V An n by p-1 data matrix
#' @export
#' @examples
#' NULL
GetClusters <- function(V){
nprobes <- ncol(V) + 1
clust.label <- 1
clusters <- c()
clusters[1] <- clust.label
for(probe.iter in 2:nprobes){
if(sum(V[,probe.iter-1])!=0){
clust.label = clust.label + 1
}
clusters[probe.iter] <- clust.label
}
clust.size <- unlist(lapply(unique(clusters),function(x){sum(clusters==x)}))
list(cluster=clusters,size=clust.size)
}
#' A function for plotting cross validation errors
#'
#' @param ErrMat A matrix of error outputted by \code{SpaCC_CV}
#' @param rule An interger indicating which CV rule to choose
#' @param gamma.seq The sequence of regularization parameters
#' @export
#' @examples
#'library(dplyr)
#'library(tidyr)
#'data("methy")
#'methy <- methy[1:20,1:10]
#'Coordinates <- methy$Genomic_Coordinate
#'methy %>%
#' tbl_df() %>%
#' select(-Chromosome,-Genomic_Coordinate) %>%
#' gather(Subject,Value,-ProbeID) %>%
#' spread(ProbeID,Value) -> X
#'SubjectLabels <- X$Subject
#'X <- X[,-1] %>% as.matrix()
#'nsubj <- nrow(X)
#'nprobes <- ncol(X)
#'nweights <- choose(nprobes,2)
#'diff.vals <- diff(Coordinates)
#'too.far <- diff.vals > 20000
#'sig = 1/5e3
#'w.values <- exp(-sig*diff.vals)
#'w.values[too.far] = 0
#'
#'verbose=TRUE
#'tol.base = 1e-4
#'tol.miss = 1e-4
#'max.iter.base=5000
#'max.iter.miss=500
#'ngam = 20
#'gamma.seq <- exp(seq(log(1e-1),log(1e1),length.out=ngam))
#'CVRes <- SpaCC_CV(X=t(scale(t(X),center=TRUE,scale=FALSE)),
#' w=w.values,
#' gamma.seq=gamma.seq,
#' nfolds=5,
#' nu=1/nsubj,
#' verbose=TRUE,
#' tol.base=tol.base,
#' tol.miss=tol.miss,
#' max.iter.base=max.iter.base,
#' max.iter.miss=max.iter.miss,
#' parallel=FALSE,frac = 1)
#'PlotCV(CVRes$ErrMat,gamma.seq = CVRes$gamma.seq,rule = 1)
PlotCV <- function(ErrMat,rule=2,gamma.seq) {
resp <- se <- NULL
AvgErr <- apply(ErrMat,1,mean)
SdErr <- apply(ErrMat,1,sd)
min.err.ind <- which.min(AvgErr)
if(rule == 1) {
best.gam <- gamma.seq[min.err.ind]
} else if(rule == 2){
best.gam <- gamma.seq[min(which(AvgErr <= AvgErr[which.min(AvgErr)] + SdErr[which.min(AvgErr)]))]
} else if (rule == 3){
best.gam <- gamma.seq[min(which(AvgErr <= AvgErr[which.min(AvgErr)] + SdErr[which.min(AvgErr)])) - 1]
}
else{
stop('Unknown Rule')
}
ErrDf <- data.frame(
resp = AvgErr,
se = SdErr
)
limits <- aes(ymax = resp + se, ymin = resp - se)
qplot(gamma.seq,AvgErr,data=ErrDf) + geom_errorbar(limits,width=0.2) + scale_x_log10() + geom_vline(xintercept=best.gam)
}
#' Get optimal cross validated gamma values by various rules
#' @param ErrMat Matrix of cross validated errors outputted by \code{GetCVErrMat}
#' @param rule A number indicating how optimal gamma should be chosen. 1 for minimum cv error,
#' 2 for 1 standard error rule
#' @param gamma.seq sequence of regularization parameters used for cross validation.
#' @return A scalar. Optimal gamma selected by CV rule.
#' @export
#' @examples
#' NULL
GetGammaCV <- function(ErrMat,rule=1,gamma.seq) {
gamma.seq <- sort(gamma.seq,decreasing=TRUE)
AvgErr <- apply(ErrMat,1,mean)
SdErr <- apply(ErrMat,1,sd)
min.err.ind <- which.min(AvgErr)
if(rule == 1) {
best.gam <- gamma.seq[min.err.ind]
} else if(rule ==2) {
best.gam <- gamma.seq[min(which(AvgErr <= AvgErr[which.min(AvgErr)] + SdErr[which.min(AvgErr)]))]
} else if (rule ==3){
best.gam <- gamma.seq[min(which(AvgErr <= AvgErr[which.min(AvgErr)] + SdErr[which.min(AvgErr)])) - 1]
}else{
stop('Unknown Rule')
}
return(best.gam)
}
#' Threshold differences
#' @param V an n x p-1 matrix of differences
#' @param X an n x p matrix
#' @param mult scalar to multiply standard deviation
#' @param thresh.value optional user specified threshold value.
#' @return VThreshed an n x p-1 matrix of thresholded differences
#' @export
#' @examples
#' NULL
ThreshV <- function(V,X,mult=1,thresh.value=NULL){
if(is.null(thresh.value)){
p <- ncol(V)+1
n <- nrow(V)
thresh.value <- mult*sd(X,na.rm=TRUE)*sqrt(log(p)/n)
}
ret <- V
ret[abs(V)<=thresh.value]=0
ret
}
#' Plots methylation data by Genomic Coordinates for a given chromosomal region with cluster means overlayed for each subject.
#'
#' @param X A Subject by Probe data matrix for a single chromosome of CNV data
#' @param Coord A vector of Genomic Coordinates for a single chromosome
#' @param Cluster Cluster labels for each probe
#' @param SubjInd A vector of numeric indicies corresponding to the Subjects to be plotted.
#' @param Start Genomic Coordinate minimum
#' @param End Genomic Coordinate maximum
#' @export
#' @examples
#'library(dplyr)
#'library(tidyr)
#'data("methy")
#'methy <- methy[1:20,1:10]
#'Coordinates <- methy$Genomic_Coordinate
#'methy %>%
#' tbl_df() %>%
#' select(-Chromosome,-Genomic_Coordinate) %>%
#' gather(Subject,Value,-ProbeID) %>%
#' spread(ProbeID,Value) -> X
#'SubjectLabels <- X$Subject
#'X <- X[,-1] %>% as.matrix()
#'nsubj <- nrow(X)
#'nprobes <- ncol(X)
#'nweights <- choose(nprobes,2)
#'diff.vals <- diff(Coordinates)
#'too.far <- diff.vals > 20000
#'sig = 1/5e3
#'w.values <- exp(-sig*diff.vals)
#'w.values[too.far] = 0
#'
#'verbose=TRUE
#'tol.base = 1e-4
#'tol.miss = 1e-4
#'max.iter.base=5000
#'max.iter.miss=500
#'ngam = 20
#'gamma.seq <- exp(seq(log(1e-1),log(1e1),length.out=ngam))
#'CVRes <- SpaCC_CV(X=t(scale(t(X),center=TRUE,scale=FALSE)),
#' w=w.values,
#' gamma.seq=gamma.seq,
#' nfolds=5,
#' nu=1/nsubj,
#' verbose=TRUE,
#' tol.base=tol.base,
#' tol.miss=tol.miss,
#' max.iter.base=max.iter.base,
#' max.iter.miss=max.iter.miss,
#' parallel=FALSE,frac = .1)
#'PlotCV(CVRes$ErrMat,gamma.seq = CVRes$gamma.seq,rule = 1)
#'best.gam <- GetGammaCV(CVRes$ErrMat,rule = 1,gamma.seq = CVRes$gamma.seq)
#'bo <-t(scale(t(X),center=TRUE,scale=FALSE))
#'bo[is.na(bo)] <- mean(bo,na.rm=TRUE)
#'Sol <- SpaCC_Missing(t(scale(t(X),center=TRUE,scale=FALSE)),
#' w.values,
#' gamma = best.gam,
#' nu=1/nsubj,
#' verbose=TRUE,
#' tol.base=tol.base,
#' tol.miss=tol.miss,
#' max.iter.base=max.iter.base,
#' max.iter.miss=max.iter.miss,
#' bo,
#' t(diff(t(bo))),
#' t(diff(t(bo))))
#'VThreshed <- Sol$V
#'clustsThreshed <- GetClusters(VThreshed)
#'NEstRegion <- length(unique(clustsThreshed$cluster))
#'NEstRegion
#'VThreshed <- ThreshV(Sol$V,X,mult = 1)
#'clustsThreshed <- GetClusters(VThreshed)
#'NEstRegion <- length(unique(clustsThreshed$cluster))
#'NEstRegion
#'start.coord <- 2e5
#'end.coord <- 4e5
#'MethyRegionPlot(X,Coordinates,clustsThreshed$cluster,SubjInd = 1:3,Start=start.coord,End=end.coord)
MethyRegionPlot <- function(X,Coord,Cluster,SubjInd=1:3,Start,End){
Subject <- PrbMeasure <- Location <- MeanMeasure <- NULL
X <- t(X[SubjInd,])
NSubj <- length(SubjInd)
SimMatClust <- cbind.data.frame(Coord, X, Cluster)
names(SimMatClust) <-c(
'Location',
paste('Subject',1:NSubj, sep=''),
'Cluster')
rhs <- SimMatClust %>%
gather(Subject,
PrbMeasure,
-Location,
-Cluster) %>%
group_by(Cluster, Subject) %>%
summarise(
MeanMeasure = mean(PrbMeasure),
nProbe = n()
)
lhs <- SimMatClust %>%
gather(Subject,
PrbMeasure,
-Location,
-Cluster)
inner_join(lhs,rhs,by=c('Subject','Cluster')) %>%
ggplot(aes(x=Location,y=PrbMeasure)) +
geom_point() +
geom_line(aes(x=Location,y=MeanMeasure,
color=as.factor(Cluster))) +
facet_wrap(~Subject,nrow=NSubj) +
scale_y_continuous(limits=c(-1.1,1.1)) +
scale_x_continuous(limits=c(Start,End))+
guides(color=FALSE)
}
#' Performs Spatial Convex Clustering for methylation data
#' @param X A subject (n) by variable (p) matrix; the data
#' @param Coordinates a vector listing genomic coordinates
#' @param gamma.seq a vector of regularization parameters
#' @param dist.cutoff maximum distance at which probes should be regularized
#' @param sig positive scalar controling spatial weight decay
#' @param weights a vector of spatial weights
#' @param center should data be centered
#' @param scale should data be scaled
#' @param nfolds number of folds for cross validation
#' @param nu parameter for augmented lagrangian
#' @param tol.base tolerance level for base function
#' @param tol.miss tolerance for missing function
#' @param max.iter.base maximum number of iterations for base function
#' @param max.iter.miss maximum number of iterations for missing function
#' @param frac fration of fold to use for cross validation
#' @param parallel should algorithm be run in parallel
#' @param gam.rule cross validation rule
#' @param thresh.mult multiplier for threshold value
#' @param thresh.value value of threshold
#' @return Labels a vector of cluster labels
#' @export
#' @examples
#'data("methy")
#'methy <- methy[1:20,1:10]
#'library(dplyr)
#'library(tidyr)
#'Coordinates <- methy$Genomic_Coordinate
#'methy %>%
#' tbl_df() %>%
#' select(-Chromosome,-Genomic_Coordinate) %>%
#' gather(Subject,Value,-ProbeID) %>%
#' spread(ProbeID,Value) -> X
#'SubjectLabels <- X$Subject
#'X <- X[,-1] %>% as.matrix()
#'verbose=TRUE
#'tol.base = 1e-4
#'tol.miss = 1e-4
#'max.iter.base=5000
#'max.iter.miss=500
#'ngam = 20
#'gamma.seq <- exp(seq(log(1e-1),log(1e1),length.out=ngam))
#'ClusterLabels <- SpaCC_Methy(X = X,Coordinates = Coordinates,gamma.seq = gamma.seq)
SpaCC_Methy <- function(X,
Coordinates,
gamma.seq,
dist.cutoff = 20000,
sig=1/5e3,
weights=NULL,
center=TRUE,
scale=FALSE,
nfolds=5,
nu=NULL,
tol.base=1e-4,
tol.miss=1e-4,
max.iter.base=5000,
max.iter.miss=500,
frac=.1,
parallel=FALSE,
gam.rule=2,
thresh.mult=1,
thresh.value=NULL){
nsubj <- nrow(X)
nprobes <- ncol(X)
ngam <- length(gamma.seq)
if(is.null(weights)){
nweights <- choose(nprobes,2)
diff.vals <- diff(Coordinates)
too.far <- diff.vals > dist.cutoff
w.values <- exp(-sig*diff.vals)
w.values[too.far] = 0
}
if(is.null(nu)){
nu <- 1/nsubj
}
CVRes <- SpaCC_CV(X=t(scale(t(X),center=center,scale=scale)),
w=w.values,
gamma.seq=gamma.seq,
nfolds=nfolds,
nu=nu,
verbose=TRUE,
tol.base=tol.base,
tol.miss=tol.miss,
max.iter.base=max.iter.base,
max.iter.miss=max.iter.miss,
parallel=parallel,
frac=frac)
best.gam <- GetGammaCV(CVRes$ErrMat,rule = gam.rule,gamma.seq = CVRes$gamma.seq)
bo <-t(scale(t(X),center=TRUE,scale=FALSE))
bo[is.na(bo)] <- mean(bo,na.rm=TRUE)
Sol <- SpaCC_Missing(t(scale(t(X),center=TRUE,scale=FALSE)),
w.values,
gamma = best.gam,
nu=1/nsubj,
verbose=TRUE,
tol.base=tol.base,
tol.miss=tol.miss,
max.iter.base=max.iter.base,
max.iter.miss=max.iter.miss,
bo,
t(diff(t(bo))),
t(diff(t(bo))))
if(is.null(thresh.value)){
VThreshed <- ThreshV(Sol$V,X,mult = thresh.mult)
} else{
VThreshed <- ThreshV(Sol$V,X,mult = thresh.mult,thresh.value = thresh.value)
}
clustsThreshed <- GetClusters(VThreshed)
NEstRegion <- length(unique(clustsThreshed$cluster))
clustsThreshed$cluster
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.