RVinePDF | R Documentation |
This function calculates the probability density function of a d-dimensional R-vine copula.
RVinePDF(newdata, RVM, verbose = TRUE)
newdata |
An N x d data matrix that specifies where the density shall be evaluated. |
RVM |
An |
verbose |
In case something goes wrong, additional output will be plotted. |
The density of a d
-dimensional R-vine copula with d-1
trees and
corresponding edge sets E_1,...,E_{d-1}
is given by
\prod_{\ell=1}^{d-1} \prod_{e\in E_\ell }
c_{j(e),k(e)|D(e)}(F(u_{j(e)}|u_{D(e)}),F(u_{k(e)}|u_{D(e)})|\theta_{j(e),k(e)|D(e)}),
where
\boldsymbol{u}=(u_{1},...,u_{d})^\prime\in[0,1]^d
.
Further c_{j(e),k(e)|D(e)}
denotes a bivariate copula density
associated to an edge e
and with parameter(s)
\boldsymbol{\theta}_{j(e),k(e)|D(e)}
.
Conditional distribution functions such as
F(u_{j(e)}|\boldsymbol{u}_{D(e)})
are obtained
recursively using the relationship
h(u|\boldsymbol{v},\boldsymbol{\theta}) := F(u|\boldsymbol{v}) =
d C_{uv_j|v_{-j}}(F(u|v_{-j}),F(v_j|v_{-j}))/d F(v_j|v_{-j}),
where
C_{uv_j|\boldsymbol{v}_{-j}}
is a bivariate copula
distribution function with parameter(s) \boldsymbol{\theta}
and \boldsymbol{v}_{-j}
denotes a vector with the j
-th
component v_j
removed. The notation of h-functions is introduced for
convenience. For more details see Dissmann et al. (2013).
The function is actually just a wrapper to RVineLogLik()
.
Thomas Nagler
Dissmann, J. F., E. C. Brechmann, C. Czado, and D. Kurowicka (2013). Selecting and estimating regular vine copulae and application to financial returns. Computational Statistics & Data Analysis, 59 (1), 52-69.
BiCopHfunc()
, RVineMatrix()
,
RVineMLE()
, RVineAIC()
, RVineBIC()
# define 5-dimensional R-vine tree structure matrix
Matrix <- c(5, 2, 3, 1, 4,
0, 2, 3, 4, 1,
0, 0, 3, 4, 1,
0, 0, 0, 4, 1,
0, 0, 0, 0, 1)
Matrix <- matrix(Matrix, 5, 5)
# define R-vine pair-copula family matrix
family <- c(0, 1, 3, 4, 4,
0, 0, 3, 4, 1,
0, 0, 0, 4, 1,
0, 0, 0, 0, 3,
0, 0, 0, 0, 0)
family <- matrix(family, 5, 5)
# define R-vine pair-copula parameter matrix
par <- c(0, 0.2, 0.9, 1.5, 3.9,
0, 0, 1.1, 1.6, 0.9,
0, 0, 0, 1.9, 0.5,
0, 0, 0, 0, 4.8,
0, 0, 0, 0, 0)
par <- matrix(par, 5, 5)
# define second R-vine pair-copula parameter matrix
par2 <- matrix(0, 5, 5)
# define RVineMatrix object
RVM <- RVineMatrix(Matrix = Matrix, family = family,
par = par, par2 = par2,
names = c("V1", "V2", "V3", "V4", "V5"))
# compute the density at (0.1, 0.2, 0.3, 0.4, 0.5)
RVinePDF(c(0.1, 0.2, 0.3, 0.4, 0.5), RVM)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.