Nothing
#' @title \packageTitle{VineCopula}
#'
#' @description
#' \packageDescription{VineCopula}
#'
#' @details
#' Vine copulas are a flexible class of dependence models consisting of
#' bivariate building blocks (see e.g., Aas et al., 2009). This package is
#' primarily made for the statistical analysis of vine copula
#' models. The package includes tools for parameter estimation, model selection,
#' simulation, goodness-of-fit tests, and visualization. Tools for estimation,
#' selection and exploratory data analysis of bivariate copula models are
#' also provided.
#'
#' The DESCRIPTION file:
#' \packageDESCRIPTION{VineCopula}
#'
#'
#' @name VineCopula-package
#' @aliases VineCopula-package VineCopula
#'
#' @section Remark: The package `VineCopula` is a continuation of the
#' package `CDVine` by U. Schepsmeier and E. C. Brechmann (see Brechmann
#' and Schepsmeier (2013)). It includes all functions implemented in CDVine for
#' the bivariate case (BiCop-functions).
#'
#' @references Aas, K., C. Czado, A. Frigessi, and H. Bakken (2009).
#' Pair-copula constructions of multiple dependence. Insurance: Mathematics and
#' Economics 44 (2), 182-198.
#'
#' Bedford, T. and R. M. Cooke (2001). Probability density decomposition for
#' conditionally dependent random variables modeled by vines. Annals of
#' Mathematics and Artificial intelligence 32, 245-268.
#'
#' Bedford, T. and R. M. Cooke (2002). Vines - a new graphical model for
#' dependent random variables. Annals of Statistics 30, 1031-1068.
#'
#' Brechmann, E. C., C. Czado, and K. Aas (2012). Truncated regular vines in
#' high dimensions with applications to financial data. Canadian Journal of
#' Statistics 40 (1), 68-85.
#'
#' Brechmann, E. C. and C. Czado (2011). Risk management with high-dimensional
#' vine copulas: An analysis of the Euro Stoxx 50. Statistics & Risk Modeling,
#' 30 (4), 307-342.
#'
#' Brechmann, E. C. and U. Schepsmeier (2013). Modeling Dependence with C- and
#' D-Vine Copulas: The R Package CDVine. Journal of Statistical Software, 52
#' (3), 1-27. \doi{10.18637/jss.v052.i03}.
#'
#' Czado, C., U. Schepsmeier, and A. Min (2012). Maximum likelihood estimation
#' of mixed C-vines with application to exchange rates. Statistical Modelling,
#' 12(3), 229-255.
#'
#' Dissmann, J. F., E. C. Brechmann, C. Czado, and D. Kurowicka (2013).
#' Selecting and estimating regular vine copulae and application to financial
#' returns. Computational Statistics & Data Analysis, 59 (1), 52-69.
#'
#' Eschenburg, P. (2013). Properties of extreme-value copulas Diploma thesis,
#' Technische Universitaet Muenchen
#' <https://mediatum.ub.tum.de/node?id=1145695>
#'
#' Joe, H. (1996). Families of m-variate distributions with given margins and
#' m(m-1)/2 bivariate dependence parameters. In L. Rueschendorf, B. Schweizer,
#' and M. D. Taylor (Eds.), Distributions with fixed marginals and related
#' topics, pp. 120-141. Hayward: Institute of Mathematical Statistics.
#'
#' Joe, H. (1997). Multivariate Models and Dependence Concepts. London: Chapman
#' and Hall.
#'
#' Knight, W. R. (1966). A computer method for calculating Kendall's tau with
#' ungrouped data. Journal of the American Statistical Association 61 (314),
#' 436-439.
#'
#' Kurowicka, D. and R. M. Cooke (2006). Uncertainty Analysis with High
#' Dimensional Dependence Modelling. Chichester: John Wiley.
#'
#' Kurowicka, D. and H. Joe (Eds.) (2011). Dependence Modeling: Vine Copula
#' Handbook. Singapore: World Scientific Publishing Co.
#'
#' Nelsen, R. (2006). An introduction to copulas. Springer
#'
#' Schepsmeier, U. and J. Stoeber (2014). Derivatives and Fisher information of
#' bivariate copulas. Statistical Papers, 55 (2), 525-542. \cr
#' <https://link.springer.com/article/10.1007/s00362-013-0498-x>.
#'
#' Schepsmeier, U. (2013) A goodness-of-fit test for regular vine copula
#' models. Preprint <https://arxiv.org/abs/1306.0818>
#'
#' Schepsmeier, U. (2015) Efficient information based goodness-of-fit tests for
#' vine copula models with fixed margins. Journal of Multivariate Analysis 138,
#' 34-52.
#'
#' Stoeber, J. and U. Schepsmeier (2013). Estimating standard errors in regular
#' vine copula models. Computational Statistics, 28 (6), 2679-2707 \cr
#' <https://link.springer.com/article/10.1007/s00180-013-0423-8#>.
#'
#' White, H. (1982) Maximum likelihood estimation of misspecified models,
#' Econometrica, 50, 1-26.
"_PACKAGE"
#' Major German Stocks
#'
#' This data set contains transformed standardized residuals of daily log
#' returns of 15 major German stocks represented in the index DAX observed from
#' January 2005 to August 2009. Each time series is filtered using a GARCH(1,1)
#' model with Student t innovations.
#'
#'
#' @name daxreturns
#' @docType data
#' @format A data frame with 1158 observations on 15 variables. Column names
#' correspond to ticker symbols of the stocks.
#' @seealso [RVineStructureSelect()]
#' @source Yahoo! Finance
#' @examples
#'
#' # load the data set
#' data(daxreturns)
#'
#' # compute the empirical Kendall's tau matrix
#' TauMatrix(daxreturns)
#'
NULL
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.