Nothing
### actuar: Actuarial Functions and Heavy Tailed Distributions
###
### Simulation of a aggregate claim amounts
###
### AUTHORS: Vincent Goulet <vincent.goulet@act.ulaval.ca>
### and Louis-Philippe Pouliot
simS <- function(n, model.freq, model.sev)
{
## Prepare the call to simul() by building up 'nodes'
level.names <- names(if (is.null(model.freq)) model.sev else model.freq)
nlevels <- length(level.names)
nodes <- as.list(c(rep(1, nlevels - 1), n))
names(nodes) <- level.names
## Get sample
x <- aggregate(simul(nodes = nodes,
model.freq = model.freq,
model.sev = model.sev))[-1]
## Compute the empirical cdf of the sample. Done manually instead
## of calling stats::ecdf to keep a copy of the empirical pmf in
## the environment without computing it twice.
x <- sort(x)
vals <- unique(x)
fs <- tabulate(match(x, vals))/length(x)
FUN <- approxfun(vals, pmin(cumsum(fs), 1), method = "constant",
yleft = 0, yright = 1, f = 0, ties = "ordered")
class(FUN) <- c("ecdf", "stepfun", class(FUN))
assign("fs", fs, envir = environment(FUN))
FUN
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.