demo/lossdist.R

### actuar: Actuarial Functions and Heavy Tailed Distributions
###
### Demo of the loss distributions facilities provided by actuar
###
### AUTHOR: Vincent Goulet <vincent.goulet@act.ulaval.ca>

require(actuar)
require(graphics)


### A utility function to create graphs for probability laws
showgraphs <- function(fun, par, what = c("d", "p", "m", "lev"), xlim)
{
    dist <- switch(fun,
                   trbeta = "TRANSFORMED BETA DISTRIBUTION",
                   genpareto = "GENERALIZED PARETO DISTRIBUTION",
                   burr = "BURR DISTRIBUTION",
                   invburr = "INVERSE BURR DISTRIBUTION",
                   pareto = "PARETO DISTRIBUTION",
                   invpareto = "INVERSE PARETO DISTRIBUTION",
                   llogis = "LOGLOGISTIC DISTRIBUTION",
                   paralogis = "PARALOGISTIC DISTRIBUTION",
                   invparalogis = "INVERSE PARALOGISTIC DISTRIBUTION",
                   trgamma = "TRANSFORMED GAMMA DISTRIBUTION",
                   invtrgamma = "INVERSE TRANSFORMED GAMMA DISTRIBUTION",
                   invgamma = "INVERSE GAMMA DISTRIBUTION",
                   weibull = "WEIBULL DISTRIBUTION",
                   invweibull = "INVERSE WEIBULL DISTRIBUTION",
                   invexp = "INVERSE EXPONENTIAL DISTRIBUTION",
                   pareto1 = "SINGLE PARAMETER PARETO DISTRIBUTION",
                   lgamma = "LOGGAMMA DISTRIBUTION",
                   genbeta = "GENERALIZED BETA DISTRIBUTION",
                   phtype = "PHASE-TYPE DISTRIBUTION",
                   gamma = "GAMMA DISTRIBUTION",
                   exp = "EXPONENTIAL DISTRIBUTION",
                   chisq = "CHI-SQUARE DISTRIBUTION",
                   lnorm = "LOGNORMAL DISTRIBUTION",
                   invgauss = "INVERSE GAUSSIAN DISTRIBUTION",
                   norm = "NORMAL DISTRIBUTION",
                   beta = "BETA DISTRIBUTION",
                   unif = "UNIFORM DISTRIBUTION")

    if (missing(xlim))
    {
        qf <- match.fun(paste("q", fun, sep = ""))
        formals(qf)[names(par)] <- par
        xlim <- c(0, qf(0.999))
    }
    k <- seq.int(4)
    limit <- seq(0, xlim[2], len = 10)
    mfrow = c(ceiling(length(what) / 2), 2)
    op <- par(mfrow = mfrow, oma = c(0, 0, 2, 0))

    for (t in what)
    {
        f   <- match.fun(paste(t, fun, sep = ""))
        formals(f)[names(par)] <- par

        main <- switch(t,
                       "d" = "Probability Density Function",
                       "p" = "Cumulative Distribution Function",
                       "m" = "Raw Moments",
                       "lev" = "Limited Expected Value Function",
                       "mgf" = "Moment Generating Function")

        if (t == "m")
            plot(k, f(k), type = "l", col = 4, lwd = 2, main = main)
        else if (t == "lev")
            plot(limit, f(limit), type = "l", col = 4, lwd = 2, main = main)
        else if (t == "mgf")
            curve(f(x), xlim = c(0, 2), col = 4, lwd = 2, main = main)
        else
            curve(f(x), xlim = xlim, col = 4, lwd = 2, main = main)
        title(main = dist, outer = TRUE)
    }
    par(op)
}

###
### DATA SETS
###

## The package includes the individual dental claims and grouped
## dental claims data sets often referred to in Klugman, Panjer &
## Willmot (1998, 2004)
data(dental); dental
data(gdental); gdental


###
### PROBABILITY LAWS
###

## Illustration of the new probability laws functions provided by the
## package.

## TRANSFORMED BETA FAMILY

## Transformed beta distribution
showgraphs("trbeta", list(shape1 = 3, shape2 = 4, shape3 = 5, scale = 10))

## Generalized Pareto distribution
showgraphs("genpareto", list(shape1 = 10, shape2 = 4, scale = 10))

## Burr distribution
showgraphs("burr", list(shape1 = 3, shape2 = 4, scale = 10))

## Inverse Burr distribution
showgraphs("invburr", list(shape1 = 3, shape2 = 6, scale = 10))

## Pareto distribution
showgraphs("pareto", list(shape = 10, scale = 10))

## Inverse Pareto distribution
showgraphs("invpareto", list(shape = 4, scale = 1), what = c("d", "p"))

## Loglogistic distribution
showgraphs("llogis", list(shape = 6, scale = 10))

## Paralogistic distribution
showgraphs("paralogis", list(shape = 3, scale = 10))

## Inverse paralogistic distribution
showgraphs("invparalogis", list(shape = 6, scale = 10))

## TRANSFORMED GAMMA FAMILY

## Transformed gamma distribution
showgraphs("trgamma", list(shape1 = 3, shape2 = 1, scale = 10))

## Inverse transformed gamma distribution
showgraphs("invtrgamma", list(shape1 = 3, shape2 = 2, scale = 10))

## Inverse gamma distribution
showgraphs("invgamma", list(shape = 6, scale = 10))

## Weibull distribution ('mweibull' and 'levweibull')
showgraphs("weibull", list(shape = 1.5, scale = 10))

## Inverse Weibull distribution
showgraphs("invweibull", list(shape = 6, scale = 10))

## Inverse exponential distribution
showgraphs("invexp", list(rate = 1), what = c("d", "p"))

## OTHER DISTRIBUTIONS

## Single parameter Pareto distribution
showgraphs("pareto1", list(shape = 5, min = 10), xlim = c(0, 50))

## Loggamma distribution
showgraphs("lgamma", list(shapelog = 2, ratelog = 5))

## Generalized beta distribution
showgraphs("genbeta", list(shape1 = 1, shape2 = 2, shape3 = 3, scale = 2))

## Phase-type distribution
showgraphs("phtype", list(prob = c(0.5614, 0.4386), rates = matrix(c(-8.64, 0.101, 1.997, -1.095), 2, 2)), what = c("d", "p", "m", "mgf"), xlim = c(0.001, 5))

## DISTRIBUTIONS ALREADY IN R

## Gamma distribution
showgraphs("gamma", list(shape = 3, rate = 5), what = c("m", "lev", "mgf"))

## Chi-square distribution
showgraphs("chisq", list(df = 3), what = c("m", "lev", "mgf"))

## Exponential distribution
showgraphs("exp", list(rate = 5), what = c("m", "lev", "mgf"))

## Lognormal distribution
showgraphs("lnorm", list(meanlog = 1, sdlog = 1), what = c("m", "lev"))

## Inverse gaussian distribution (from package SuppDists)
showgraphs("invgauss", list(nu = 1, lambda = 10), what = c("m", "lev", "mgf"), xlim = c(0, 10))

## Normal distribution
showgraphs("norm", list(mean = 0, sd = 1), what = c("m", "mgf"))

## Beta distribution
showgraphs("beta", list(shape1 = 1, shape2 = 2), what = c("m", "lev"))

## Uniform distribution
showgraphs("unif", list(min = 0, max = 1), what = c("m", "lev", "mgf"))


###
### GROUPED DATA MANIPULATION
###

## Creation of grouped data objects
x <- grouped.data(groups = c(0, 25, 50, 100, 150, 250, 500),
                  line1 = c(30, 31, 57, 42, 65, 84),
                  line2 = c(26, 33, 31, 19, 16, 11))
x

## Extraction and replacement: only "[" and "[<-" are officially
## supported.
x[, 1]                                  # group boundaries
x[1]                                    # notice the difference
x[, -1]                                 # group frequencies
x[1:3,]                                 # first 3 groups
x[1, 2] <- 22; x                        # frequency replacement
x[1, 1] <- c(0, 20); x                  # boundary replacement

## Mean, variance and standard deviation for grouped data objects.
mean(x)
var(x)
sd(x)

## In the sequel, only the first frequencies column is considered.
x <- x[, -3]

## Function 'hist' handles individual data only. We provide a method
## for grouped data.
hist(x)

## Function 'ogive' returns a function to compute the ogive of grouped
## data in any point, much like 'ecdf' does for individual data.
## Methods also exist to extract the group boundaries ('knots') and
## to plot the ogive.
Fnt <- ogive(x)
summary(Fnt)
knots(Fnt)                              # group boundaries
Fnt(knots(Fnt))                         # ogive at group boundaries
plot(Fnt)                               # plot of the ogive

## The method of 'quantile' for grouped data objects computes linearly
## smoothed quantiles, that is the inverse of the ogive in various
## points.
quantile(x)
Fnt(quantile(x))

## The method of 'summary' for grouped data objects returns the
## quantiles and the mean in a single object.
summary(x)

###
### EMPIRICAL MOMENTS CALCULATION
###

## Function 'emm' computes the k-th empirical moment of a sample,
## whether it is individual or grouped data.
emm(dental)                             # == mean(dental)
emm(gdental)                            # == mean(gdental)
emm(dental, order = 1:3)                # first three moments
emm(gdental, order = 1:3)               # idem

## Function 'elev' is similar to 'ecdf' and 'ogive' in that it returns
## a function to compute the empirical limited expected value (first
## limited moment) for any limit. There are methods for individual and
## grouped data.
lev <- elev(dental)
lev(knots(lev))                         # ELEV at data points
plot(lev, type = "o", pch = 19)         # plot of the ELEV function

lev <- elev(gdental)
lev(knots(lev))                         # ELEV at data points
plot(lev, type = "o", pch = 19)         # plot of the ELEV function


###
### MINIMUM DISTANCE ESTIMATION
###

## Maximum likelihood estimation (for individual data) is well covered
## by 'fitdistr' in package MASS. We provide function 'mde' to fit
## models using three distance minimization techniques: Cramer-von
## Mises (for individual and grouped data), chi-square and layer
## average severity (both grouped data only). Usage (and inner
## working) is very similar to 'fitdistr'.
mde(dental, pexp, start = list(rate = 1/200), measure = "CvM")
mde(gdental, pexp, start = list(rate = 1/200), measure = "CvM")
mde(gdental, pexp, start = list(rate = 1/200), measure = "chi-square")
mde(gdental, levexp, start = list(rate = 1/200), measure = "LAS")


###
### COVERAGE MODIFICATIONS
###

## Function 'coverage' is useful to obtain the probability density
## function (pdf) or cumulative distribution function (cdf) of a loss
## random variable under coverage modifications.
f <- coverage(dgamma, pgamma, deductible = 1, limit = 7)
curve(dgamma(x, 3), xlim = c(0, 10), ylim = c(0, 0.3))    # original
curve(f(x, 3), xlim = c(0.01, 5.99), col = 4, add = TRUE) # modified

x <- rgamma(1000, 3, 1)                 # sample of claim amounts
x <- pmin(x, 7)[x > 1] - 1              # deductible and limit

library(MASS)                           # for ML estimation
m <- mean(x)                            # empirical mean
v <- var(x)                             # empirical variance
(p <- fitdistr(x, f, start = list(shape = m^2/v, rate = m/v))$estimate ) # MLE
hist(x + 1, breaks = 0:10, prob = TRUE)  # histogram of observed data
curve(dgamma(x, p[1], p[2]), add = TRUE) # fit of underlying distribution

par(op)

Try the actuar package in your browser

Any scripts or data that you put into this service are public.

actuar documentation built on Nov. 8, 2023, 9:06 a.m.