R/beta.div.comp.R

Defines functions beta.div.comp

Documented in beta.div.comp

#'Decompose D in replacement and richness difference components
#'
#'Podani-family and Baselga-family decompositions of the Jaccard and Sørensen 
#'dissimilarity coefficients and their quantitative forms (Ruzicka and percentage  
#'difference) into replacement and richness difference components, for species 
#'presence-absence or abundance data, as described in Legendre (2014).
#'
#'@param mat Community composition data (\code{data.frame} or \code{matrix}).
#'@param coef Family of coefficients to be computed. \itemize{\item "S" or 
#'  "Sorensen": Podani family, Sørensen-based indices. \item "J" or "Jaccard": 
#'  Podani family, Jaccard-based indices. \item "BS": Baselga family, 
#'  Sørensen-based indices. \item "BJ": Baselga family, Jaccard-based indices. 
#'  \item "N": Podani & Schmera (2011) relativized nestedness index.} The 
#'  quantitative form of the Sørensen dissimilarity is the percentage difference index.
#'  The quantitative form of the Jaccard dissimilarity is the Ruzicka index.
#'@param quant If \code{TRUE}, compute the quantitative forms of replacement, 
#'  nestedness and D. If \code{FALSE}, compute the presence-absence forms of the
#'  coefficients.
#'@param save.abc If \code{TRUE}, save the matrices of parameters a, b and c 
#'  used in presence-absence calculations.
#'  
#'@details For species presence-absence data, the dissimilarity coefficients are 
#'  Jaccard = (b+c)/(a+b+c) and Sørensen = (b+c)/(2*a+b+c) with the usual \code{a,b,c} 
#'  notation. For species abundance data, the dissimilarity coefficients are the 
#'  Ruzicka index = (B+C)/(A+B+C) and Odum's percentage difference = 
#'  (B+C)/(2A+B+C) (aka Bray-Curtis in some packages), where 
#'  \itemize{\item A = sum of the intersections (or minima) of species 
#'  abundances at two sites, \item B = sum of abundances at site 1 minus A, 
#'  \item C = sum of abundances at site 2 minus A.} The binary 
#'  (\code{quant=FALSE}) and quantitative (\code{quant=TRUE}) forms of the S and
#'  J indices return the same values when computed for presence-absence data.
#'
#'@return A list containing the following results:
#'  
#'  \itemize{
#'	\item \code{repl}: Replacement matrix, class = dist. 
#'	\item\code{rich}: Richness/abundance difference or nestedness matrix (class
#'  \code{dist}). With options "BJ", "BS" and "N", \code{rich} contains
#'  nestedness indices. With option "N", the repl[i,j] and rich[i,j] values do
#'  not add up to D[i,j]. 
#'	\item \code{D}: Dissimilarity matrix (class\code{dist}). 
#'	\item \code{part}: Beta diversity partitioning vector:
#'  \enumerate{ 
#'	\item BDtotal (total beta diversity) = sum(D.ij)/(n*(n-1)) (Legendre & De 
#'  Cáceres 2013). This is equal to sum(d.ij^2)/(n*(n-1)) where d.ij = sqrt(D.ij). The
#'  dissimilarities are square-rooted because the Jaccard, Sørensen, Ruzicka and
#'  percentage difference indices are not Euclidean. 
#'	\item Repl = Total replacement diversity. 
#'	\item RichDiff|Nes = Total richness difference diversity (or nestedness). 
#'	\item Repl/BDtotal = Total replacement diversity/Total beta diversity. 
#'	\item RichDiff/BDtotal = Total richness difference diversity (or nestedness)/Total 
#'	beta diversity.} 
#'	\item \code{note}: Name of the dissimilarity coefficient. }

#'	The Jaccard and Sørensen dissimilarity
#'  coefficients and their quantitative forms, the Ruzicka and percentage difference
#'  indices, all have upper bounds (Dmax) of 1. Hence, when all sites contain a
#'  different set of species with no species in common, the maximum value that
#'  BDtotal can take is 0.5. See Legendre & De Caceres (2013, p. 958), section
#'  Maximum value of BD. This differs form the values produced by function
#'  beta.div(): with methods "hellinger", "chord" and "profiles", which have
#'  maximum values of sqrt(2), BDtotal has a maximum value of 1 for these dissimilarities.
#'  
#'@references
#'
#'Baselga, A. (2010) Partitioning the turnover and nestedness components of beta
#'diversity. Global Ecology and Biogeography, 19, 134–143.
#'
#'Baselga, A. (2012) The relationship between species replacement, dissimilarity
#'derived from nestedness, and nestedness. Global Ecology and Biogeography, 21,
#'1223-1232.
#'
#'Baselga, A. (2013) Separating the two components of abundance-based
#'dissimilarity: balanced changes in abundance vs. abundance gradients. Methods
#'in Ecology and Evolution, 4, 552-557.
#'
#'Carvalho, J.C., Cardoso, P., Borges, P.A.V., Schmera, D. & Podani, J. (2013)
#'Measuring fractions of beta diversity and their relationships to nestedness: a
#'theoretical and empirical comparison of novel approaches. Oikos, 122, 825-834.
#'
#'Legendre, P. 2014. Interpreting the replacement and richness difference
#'components of beta diversity. Global Ecology and Biogeography, 23, 1324-1334.
#'
#'Legendre, P. and M. De Cáceres. 2013. Beta diversity as the variance of
#'community data: dissimilarity coefficients and partitioning. Ecology Letters
#'16: 951-963.
#'
#'Podani, J., Ricotta, C. & Schmera, D. (2013) A general framework for analyzing
#'beta diversity, nestedness and related community-level phenomena based on
#'abundance data. Ecological Complexity, 15, 52-61.
#'
#'Podani, J. & Schmera, D. 2011. A new conceptual and methodological framework
#'for exploring and explaining pattern in presence-absence data. Oikos, 120,
#'1625-1638.
#'
#'@author Pierre Legendre \email{pierre.legendre@@umontreal.ca}
#'  
#' @seealso  \code{\link{LCBD.comp}}
#' 
#' @examples
#'
#' if(require(ade4, quietly = TRUE)){
#' data(doubs)
#' fish.sp = doubs$fish[-8,]   # Fish data; site 8 is removed because no fish were caught
#' 
#' # Compute and partition a matrix of Jaccard indices (presence-absence data)
#' out1 = beta.div.comp(fish.sp, coef="J", quant=FALSE)
#' out1$part
#' 
#' # Compute and partition a matrix of percentage difference indices
#' # (quantitative form of Sorensen index)
#' out2 = beta.div.comp(fish.sp, coef="S", quant=TRUE)
#' out2$part
#' # In paragraph Value, see the description of the 5 elements of vector part. 
#' # Is the fish beta diversity dominated by replacement or richness/abundance difference?
#' }
#'
#' @importFrom stats as.dist
#' @export beta.div.comp

beta.div.comp <-
    function(mat,
             coef = "J",
             quant = FALSE,
             save.abc = FALSE) {
        # License: GPL-2
        # Author:: Pierre Legendre
        #
        if(sum( scale(mat, scale=FALSE)^2 )==0) stop("The data matrix has no variation")
        if(any(mat<0)) stop("The data matrix contains negative values")
        coef <- pmatch(coef, c("S", "J", "BS", "BJ", "N"))
        if (coef == 5 &
            quant)
            stop("coef='N' and quant=TRUE: combination not programmed")
        mat <- as.matrix(mat)
        n <- nrow(mat)
        if (is.null(rownames(mat)))
            noms <- paste("Site", 1:n, sep = "")
        else
            noms <- rownames(mat)
        #
        if (!quant) {
            # Binary data provided, or make the data binary
            if (coef == 1)
                form = "Podani family, Sorensen"
            if (coef == 2)
                form = "Podani family, Jaccard"
            if (coef == 3)
                form = "Baselga family, Sorensen"
            if (coef == 4)
                form = "Baselga family, Jaccard"
            if (coef == 5)
                form = "Podani & Schmera (2011) relativized nestedness"
            mat.b <- ifelse(mat > 0, 1, 0)
            a <- mat.b %*% t(mat.b)
            b <- mat.b %*% (1 - t(mat.b))
            c <- (1 - mat.b) %*% t(mat.b)
            min.bc <- pmin(b, c)
            #
            if (coef == 1 || coef == 2) {
                repl <- 2 * min.bc   # replacement, turnover, beta-3
                rich <-
                    abs(b - c)   # nestedness, richness difference, beta-rich
                #
                # Add the denominators
                if (coef == 1) {
                    # Sørensen-based components
                    repl <- repl / (2 * a + b + c)
                    rich <- rich / (2 * a + b + c)
                    D <- (b + c) / (2 * a + b + c)
                } else if (coef == 2) {
                    # Jaccard-based components
                    repl <- repl / (a + b + c)
                    rich <- rich / (a + b + c)
                    D <- (b + c) / (a + b + c)
                }
            } else if (coef == 3) {
                # Baselga 2010 components based on Sørensen
                D <-
                    (b + c) / (2 * a + b + c)             # Sørensen dissimilarity
                repl <-
                    min.bc / (a + min.bc)        # replacement, turnover
                rich <-
                    D - repl                   # richness difference
                
            } else if (coef == 4) {
                # Baselga 2012 components based on Jaccard
                D <-
                    (b + c) / (a + b + c)               # Jaccard dissimilarity
                repl <-
                    2 * min.bc / (a + 2 * min.bc)    # replacement, turnover
                rich <-
                    D - repl                   # richness difference
            } else if (coef == 5) {
                # rich = Podani N = nestdness based on Jaccard
                repl <- 2 * min.bc / (a + b + c)
                D <- (b + c) / (a + b + c)
                rich <- matrix(0, n, n)
                for (i in 2:n) {
                    for (j in 1:(i - 1)) {
                        aa = a[i, j]
                        bb = b[i, j]
                        cc = c[i, j]
                        if (a[i, j] == 0)
                            rich[i, j] <- 0
                        else
                            rich[i, j] <-
                            (aa + abs(bb - cc)) / (aa + bb + cc)
                    }
                }
            }
            
            rownames(repl) <- rownames(rich) <- rownames(D) <- noms
            D <- as.dist(D)
            repl <- as.dist(repl)
            rich <- as.dist(rich)
            total.div <- sum(D) / (n * (n - 1))
            repl.div <- sum(repl) / (n * (n - 1))
            rich.div <- sum(rich) / (n * (n - 1))
            part <-
                c(total.div,
                  repl.div,
                  rich.div,
                  repl.div / total.div,
                  rich.div / total.div)
            if(coef<=2) 
                names(part) <- c("BDtotal","Repl","RichDif","Repl/BDtotal","RichDif/BDtotal")
            if(coef>=3)
                names(part) <- c("BDtotal", "Repl", "Nes", "Repl/BDtotal", "Nes/BDtotal")
            
            if (save.abc) {
                res <- list(
                    repl = repl,
                    rich = rich,
                    D = D,
                    part = part,
                    Note = form,
                    a = as.dist(a),
                    b = as.dist(t(b)),
                    c = as.dist(t(c))
                )
            } else {
                res <- list(
                    repl = repl,
                    rich = rich,
                    D = D,
                    part = part,
                    Note = form)
            }
            
        } else {
            # Quantitative data
            # Calculations based on individuals.within.species
            if (coef == 1)
                form <- "Podani family, percentage difference"
            if (coef == 2)
                form <- "Podani family, Ruzicka"
            if (coef == 3)
                form <- "Baselga family, percentage difference"
            if (coef == 4)
                form <- "Baselga family, Ruzicka"
            # Baselga (2013) notation:
            # A = sum of minima in among-site comparisons 
            #     (called W in Legendre & Legendre 2012, p. 285 and p. 311)
            # B = site.1 sum - A 
            # C = site.2 sum - A 
            repl <- matrix(0, n, n)
            rich <- matrix(0, n, n)
            D <- matrix(0, n, n)
            rownames(repl) <- rownames(rich) <- rownames(D) <- noms
            
			for(i in 2:n) {
				for(j in 1:(i-1)) {
					tmp = mat[i,] - mat[j,]
					A = sum(pmin(mat[i,], mat[j,]))
					B = sum(tmp[tmp>0])       # Sum of species losses between T1 and T2
					C = -sum(tmp[tmp<0])      # Sum of species gains between T1 and T2
					if(coef==1|| coef==3) { 
						den <- (2*A+B+C)      # Sørensen-based (perc. diff.) components
						} else if(coef==2|| coef==4) {
						den <- (A+B+C)        # Jaccard-based (Ruzicka) components
						}
					#
					if(coef==1 || coef==2) {  # Podani indices: perc. difference, Ruzicka
						repl[i,j] <- 2*(min(B,C))/den		# 2*min(B,C)/den
						rich[i,j] <- abs(B-C)/den           # abs(B-C)/den
						D[i,j] <- (B+C)/den     			# (B+C)/den
						}
					#
					# Baselga (2013): quantitative extensions of Baselga (2010) indices
					if(coef==3) {  # Baselga indices: percentage difference
						repl[i,j] <- (min(B,C))/(A+min(B,C))
						rich[i,j] <- abs(B-C)*A/(den*(A+min(B,C)))
						D[i,j] <- (B+C)/den     			# (B+C)/den
						}
					if(coef==4) {  # Baselga indices: Ruzicka
						repl[i,j] <- 2*(min(B,C))/(A+2*min(B,C))
						rich[i,j] <- abs(B-C)*A/(den*(A+2*min(B,C)))
						D[i,j] <- (B+C)/den     			# (B+C)/den
						}
					}
				}
			#
            repl <- as.dist(repl)
            rich <- as.dist(rich)
            D <- as.dist(D)
            repl.div <- sum(repl) / (n * (n - 1))
            rich.div <- sum(rich) / (n * (n - 1))
            total.div <- sum(D) / (n * (n - 1))
            part <-
                c(total.div,
                  repl.div,
                  rich.div,
                  repl.div / total.div,
                  rich.div / total.div)
            if(coef<=2) 
                names(part) <- c("BDtotal","Repl","RichDif","Repl/BDtotal","RichDif/BDtotal")
            if(coef>=3)
                names(part) <- c("BDtotal", "Repl", "Nes", "Repl/BDtotal", "Nes/BDtotal")
            #
            res <- list(
                repl = repl,
                rich = rich,
                D = D,
                part = part,
                Note = form)
        }
        res
    }

Try the adespatial package in your browser

Any scripts or data that you put into this service are public.

adespatial documentation built on Sept. 11, 2024, 7:04 p.m.