R/perturb.R

Defines functions perturb

Documented in perturb

#' Perturb soil horizon depths using boundary distinctness
#'  
#' @param p A SoilProfileCollection
#' @param n Number of new profiles to generate (default: `100`) per profile in `p`
#' @param id a vector of profile IDs with length equal to (\code{n}). Overrides use of \code{seq_len(n)} as default profile ID values.
#' @param boundary.attr Horizon variance attribute containing numeric "standard deviations" reflecting boundary transition distinctness
#' @param thickness.attr Horizon variance attribute containing numeric "standard deviations" reflecting horizon thickness  
#' @param max.depth Depth below which horizon depths are not perturbed (default: `NULL`)
#' @param min.thickness Minimum thickness of permuted horizons (default: `1`)
#' @param new.idname New column name to contain unique profile ID (default: `pID`)
#' 
#' @description "Perturbs" the **boundary between horizons** or the **thickness of horizons** using a standard deviation specified as a horizon-level attribute. This is selected using either `boundary.attr` or `thickness.attr` to specify the column name.
#' 
#' The boundary standard deviation corresponds roughly to the concept of "horizon boundary distinctness." In contrast, the _horizon thickness_ standard deviation corresponds roughly to the "variation in horizon thickness" so it may be determined from several similar profiles that have a particular layer "in common." 
#' 
#' @details
#' 
#' Imagine a Normal curve with mean centered on the vertical (depth axis) at a representative value (RV) horizon bottom depth or thickness. By the Empirical Rule for Normal distribution, two "standard deviations" above or below that "central" mean value represent 95% of the "typical volume" of that horizon or boundary.
#' 
#' `perturb()` can leverage semi-quantitative (ordered factor) levels of boundary distinctness/topography for the upper and lower boundary of individual horizons. A handy function for this is [hzDistinctnessCodeToOffset()]. The `boundary.attr` is arguably easier to parameterize from a single profile description or "Form 232" where _horizon boundary distinctness_ classes (based on vertical distance of transition) are conventionally recorded for each layer.
#' 
#' Alternately, `perturb()` can be parameterized using standard deviation in thickness of layers derived from a group. Say, the variance parameters are defined from a set of pedons correlated to a particular series or component, and the template "seed" profile is, for example, the Official Series Description or the Representative Component Pedon.
#'
#' @return a SoilProfileCollection with `n` realizations of each profile in `p`
#' 
#' @seealso [random_profile()] [hzDistinctnessCodeToOffset()]
#' 
#' @export
#' @author D.E. Beaudette, A.G. Brown
#' @aliases permute_profile
#' @examples
#' 
#' ### THICKNESS
#' 
#' # load sample data and convert into SoilProfileCollection
#' data(sp3)
#' depths(sp3) <- id ~ top + bottom
#' 
#' # select a profile to use as the basis for simulation
#' s <- sp3[3,]
#' 
#' # reset horizon names
#' s$name <- paste('H', seq_along(s$name), sep = '')
#' 
#' # simulate 25 new profiles
#' horizons(s)$hz.sd <- 2 # constant standard deviation
#' sim.1 <- perturb(s, n = 25, thickness.attr = "hz.sd")
#' 
#' # simulate 25 new profiles using different SD for each horizon
#' horizons(s)$hz.sd <- c(1, 2, 5, 5, 5, 10, 3)
#' sim.2 <- perturb(s, n = 25, thickness.attr = "hz.sd")
#' 
#' # plot
#' par(mfrow = c(2, 1), mar = c(0, 0, 0, 0))
#' plot(sim.1)
#' mtext(
#'   'SD = 2',
#'   side = 2,
#'   line = -1.5,
#'   font = 2,
#'   cex = 0.75
#' )
#' plot(sim.2)
#' mtext(
#'   'SD = c(1, 2, 5, 5, 5, 10, 3)',
#'   side = 2,
#'   line = -1.5,
#'   font = 2,
#'   cex = 0.75
#' )
#' 
#' # aggregate horizonation of simulated data
#' # note: set class_prob_mode=2 as profiles were not defined to a constant depth
#' sim.2$name <- factor(sim.2$name)
#' a <- slab(sim.2, ~ name, cpm=2)
#' 
#' # convert to long format for plotting simplicity
#' library(data.table)
#' a.long <- data.table::melt(data.table::as.data.table(a),
#'                id.vars = c('top', 'bottom'),
#'                 measure.vars = levels(sim.2$name))
#' 
#' # plot horizon probabilities derived from simulated data
#' # dashed lines are the original horizon boundaries
#' library(lattice)
#' 
#' xyplot(
#'   top ~ value,
#'   groups = variable,
#'   data = a.long,
#'   subset = value > 0,
#'   ylim = c(100,-5),
#'   type = c('l', 'g'),
#'   asp = 1.5,
#'   ylab = 'Depth (cm)',
#'   xlab = 'Probability',
#'   auto.key = list(
#'     columns = 4,
#'     lines = TRUE,
#'     points = FALSE
#'   ),
#'   panel = function(...) {
#'     panel.xyplot(...)
#'     panel.abline(h = s$top, lty = 2, lwd = 2)
#'   }
#' )
#' 
#' ### BOUNDARIES
#' 
#' # example with sp1 (using boundary distinctness)
#' data("sp1")
#' depths(sp1) <- id ~ top + bottom
#'
#' # specify "standard deviation" for boundary thickness
#' #   consider a normal curve centered at boundary RV depth
#' # lookup table: ~maximum thickness of boundary distinctness classes, divided by 3
#' bound.lut <- c('V'=0.5,'A'=2,'C'=5,'G'=15,'D'=45) / 3
#'
#' ## V          A          C          G          D
#' ## 0.1666667  0.6666667  1.6666667  5.0000000 15.0000000
#'
#' sp1$bound_sd <- bound.lut[sp1$bound_distinct]
#'
#' # hold any NA boundary distinctness constant
#' sp1$bound_sd[is.na(sp1$bound_sd)] <- 0
#'
#' quantile(sp1$bound_sd, na.rm = TRUE)
#' p <- sp1[3]
#' 
#' # assume boundary sd is 1/12 midpoint of horizon depth
#' # (i.e. general relationship: SD increases (less well known) with depth)
#' sp1 <- transform(sp1, midpt = (bottom - top) / 2 + top, bound_sd = midpt / 12)
#' quantile(sp1$bound_sd)
#' 
#' perturb(p, boundary.attr = "bound_sd", n = 10)
#' 
#' 
#' ### Custom IDs
#'
#' ids <- sprintf("%s-%03d", profile_id(p), 1:10) 
#' perturb(p, boundary.attr = "bound_sd", id = ids)
#' 
#' 
perturb <- function(p,
                    n = 100,
                    id = NULL,
                    thickness.attr = NULL,
                    boundary.attr = NULL,
                    min.thickness = 1,
                    max.depth = NULL,
                    new.idname = 'pID') {
  
  # aqp and data.table global definitions for keywords
  .FIRST <- NULL; value <- NULL; md <- NULL; .N <- NULL; V1 <- NULL; .GRP <- NULL; gidx <- NULL; pidx <- NULL
  
  custom.ids <- FALSE
  by_thickness <- FALSE
  
  if ((missing(boundary.attr) && missing(thickness.attr)) ||
      !is.null(thickness.attr) && !is.null(boundary.attr) ||
      is.null(thickness.attr) && is.null(boundary.attr)) {
    stop("must provide one column name: thickness `thickness.attr` OR boundary `boundary.attr` containing horizon-level standard deviations", call. = FALSE)
  }
  
  if (!is.null(thickness.attr)) {
    by_thickness <- TRUE
  }
  
  if (!missing(id) && !is.null(id)) {
    custom.ids <- TRUE
    
    # keep track of missing `n` argument before it is set
    missing.n <- missing(n)
    
    n <- length(unique(id))

    if (n != length(id))
      stop("custom profile ID vector `id` contains non-unique values", call. = FALSE)

    if (!missing.n)
      message("if profile ID vector `id` is specified, `n` argument is ignored")
  }

  # calculate some SPC metadata
  hz <- data.table::data.table(horizons(p))
  idn <- idname(p)
  depthz <- horizonDepths(p)
  
  # calculate minimum depth of each profile in p
  mindepth <- p[, , .FIRST][[depthz[1]]]

  # setup for variable being perturbed
  if (by_thickness) {
    varattr <- hz[[thickness.attr]]
  } else {
    varattr <- hz[[boundary.attr]]
  }
  
  # logic checks
  if (!is.numeric(varattr) | !length(varattr) == nrow(p)) {
    stop("variance attribute must be a numeric column  name in `p` containing standard deviations of horizon or boundary thickness")
  }

  if (!all(checkHzDepthLogic(p)$valid)) {
    stop("one or more horizon depth logic tests failed for object `p`")
  }

  if (by_thickness) {
    # aqp::sim() traditionally perturbs horizon thickness
    perturb_var <- hz[[depthz[2]]] - hz[[depthz[1]]]
  } else {
    # perturb bottom depths instead of thickness for boundaries
    perturb_var <- hz[[depthz[2]]]
  }
  
  # do not vary layers below `max.depth` (if not NULL) can be arbitrary depth
  if (!is.null(max.depth) && !is.na(max.depth)) {
    idx <- which(max.depth >= mindepth)
    if (length(idx) > 0) {
      if (by_thickness) {
        d1 <- data.table::data.table(id = hz[[idname(p)]], perturb_var)
        d2 <- data.table::data.table(id = profile_id(p), mindepth)
        ldx <- (d1[d2, on = "id"][, cumsum(perturb_var) + mindepth, by = "id"]$V1) > max.depth
      } else {
        ldx <- perturb_var > max.depth
      }
    }
    varattr[ldx] <- 0
  }

  # in practice, qc warnings for improbably large SD would be useful
  # could be data entry error or improbable class assignment
  #
  # with irregular bounds, high SD could be intentional
  #  - additional random processes: waves for wavy/irregular
  #  - allowing irregular boundaries to eclipse/omit thin layers?
  #  - presence/absence of broken horizons; could this be a separate random process?

  # calculate perturbed variable vector
  # for each horizon bottom depth (boundary) calculate the gaussian offset
  res <- hz[, list(round(rnorm(n, perturb_var[.GRP], varattr[.GRP])), 
                   gidx = seq_len(n), # number of replicates
                   pidx = .SD[[idn]]), # profile ID
            by = list(hidx = seq_len(nrow(hz)))]
  
  # order result by profile*rep
  res <- res[order(pidx, gidx),]
 
  # regardless of simulation method new profiles  are reconstructed from layer thicknesses
  # (allows for handling of min.thickness, minimum depth, etc. consistently)
  if (by_thickness) {
    res <- res$V1
  } else {
    res <- res[, list(V1 = diff(c(0, V1))), by = c("pidx", "gidx")]$V1
  }
  
  # create template SPC/horizon data to insert perturb()-ed depths
  p.sub <- duplicate(p, n)
  h.sub <- horizons(p.sub)
  
  # relate .oldID to idname(p) in horizon data.frame
  idlut <- p.sub[[".oldID"]]
  names(idlut) <- p.sub[[idn]]
  nd <- data.table::data.table(id = h.sub[[idn]],
                               .oldID = idlut[h.sub[[idn]]])
  
  # join in mindepth by .oldID
  nd <- nd[data.frame(.oldID = profile_id(p), 
                      md = mindepth), 
           on = ".oldID"]
  
  # insert values
  nd$V1 <- res
  
  # calculate new top and bottom depths
  nd$.newtop <- nd[, cumsum(c(md[1], pmax(min.thickness, V1)))[1:.N], by = c("id")]$V1
  nd$.newbot <- nd[, md[1] + cumsum(pmax(min.thickness, V1)), by = c("id")]$V1
  
  # replace in template SPC
  p.sub[[depthz[1]]] <- nd$.newtop
  p.sub[[depthz[2]]] <- nd$.newbot
    
  # replace ID values if needed
  if (custom.ids & length(unique(id)) == length(p.sub)) {
    profile_id(p.sub) <- id
  }
  
  # replace ID name if needed
  if (!missing(new.idname)) {
    # these are derived from a valid ID in p.sub
    p.sub[[new.idname]] <- p.sub[[idn]]
    p.sub@horizons[[new.idname]] <- horizons(p.sub)[[idn]]
    
    # TODO: safe idname replacement method
    p.sub@idcol <- new.idname
    p.sub@horizons[[idn]] <- NULL
  }
  
  # transfers @metadata slot p->p.sub
  .transfer.metadata.aqp(p, p.sub)
}

# permute_profile <- function(p,
#                             n = 100,
#                             id = NULL,
#                             boundary.attr = NULL,
#                             min.thickness = 1,
#                             soildepth = NULL,
#                             new.idname = 'pID') {
#   .Deprecated("perturb")
#   
#   perturb(p, n = n, id = id, 
#           boundary.attr = boundary.attr, 
#           min.thickness = min.thickness, 
#           max.depth = soildepth, 
#           new.idname = new.idname)
# }

## compare permute_profile and sim, using same estimated SD

# calculate permuations of bottom depths using boundary deviations
#system.time(res <- perturb(p, n=1000, boundary_attr = "bound_sd",
#                                    min.thickness = 1))
#
# # calculate permuations of horizon thickness using horizon thickness deviation
# system.time(res2 <- perturb(p, n=1000, hz.sd = p$bound_sd, min.thick = 1))
#
# # superficially similar output
# plot(res[1:10,])
# plot(res2[1:10,])
#
# # compare slab'd result
# s.res <- slab(res, ~ prop, slab.structure = 1)
# s.res2 <- slab(res2, ~ prop, slab.structure = 1)

# inspect differences visually -- bigger differences in thicker horizons
#  applying same SD to horizon thickness as bottom depth results in more variation between realizations

# .:. thick horizons can still have abrupt boundaries, e.g. you might have a clear or gradual boundary at upper part, and abrupt at contact -- these should be handled seperately. a single SD would be useful for simulating aggregate data. the gaussian assumption is not as bad when applied to a single boundary. presumably other functions could be used to show skewed distributions.
# plot(x=s.res$p.q50, y=s.res$top, ylim=c(100,0), type="l")
# lines(x=s.res$p.q5, y=s.res$top, ylim=c(100,0), col="blue", lty=2)
# lines(x=s.res$p.q95, y=s.res$top, ylim=c(100,0), col="blue", lty=2)
#
# lines(x=s.res2$p.q50, y=s.res2$top, ylim=c(100,0), type="l", lwd=2)
# lines(x=s.res2$p.q5, y=s.res2$top, ylim=c(100,0), col="green", lty=2)
# lines(x=s.res2$p.q95, y=s.res2$top, ylim=c(100,0), col="green", lty=2)
#
# hzdesgnname(res) <- "name"
# hztexclname(res) <- "texture"
# res$clay <- res$prop
# mtr <- profileApply(res[1:1000], mollic.thickness.requirement)
# plot(hist(mtr, breaks = max(3, max(mtr) - min(mtr))))

Try the aqp package in your browser

Any scripts or data that you put into this service are public.

aqp documentation built on Sept. 11, 2024, 7:11 p.m.