Description Usage Arguments Value References See Also Examples
View source: R/Categorical_Inference.r
Generate the marginal likelihood of a set of observations of the following model structure:
pi|alpha \sim Dir(alpha)
x|pi \sim Categorical(pi)
Where Dir() is the Dirichlet distribution, Categorical() is the Categorical distribution. See ?dDir
and dCategorical
for the definitions of these distribution.
The model structure and prior parameters are stored in a "CatDirichlet" object.
Marginal likelihood is the likelihood of x|alpha
1 2 | ## S3 method for class 'CatDirichlet'
marginalLikelihood_bySufficientStatistics(obj, ss, LOG = TRUE, ...)
|
obj |
A "CatDirichlet" object. |
ss |
Sufficient statistics of x. In Categorical-Dirichlet case the sufficient statistic of sample x can be either x itself, of an "ssCat" object generated by the function sufficientStatistics.CatDirichlet(). |
LOG |
Return the log density if set to "TRUE". |
... |
Additional arguments to be passed to other inherited types. |
numeric, the marginal likelihood.
Murphy, Kevin P. Machine learning: a probabilistic perspective. MIT press, 2012.
CatDirichlet
, marginalLikelihood.CatDirichlet
1 2 3 4 5 | obj <- CatDirichlet(gamma=list(alpha=runif(26,1,2),uniqueLabels = letters))
x <- sample(letters,size = 20,replace = TRUE)
marginalLikelihood(obj=obj,x=x,LOG = TRUE) #marginal likelihood
ss <- sufficientStatistics(obj = obj,x=x)
marginalLikelihood_bySufficientStatistics(obj=obj,ss = ss,LOG = TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.