Description Usage Arguments Value References See Also Examples
View source: R/Gaussian_Inference.r
Generate the marginal likelihood of a set of observations of the following model structure:
mu,Sigma|m,k,v,S \sim NIW(m,k,v,S)
x|mu,Sigma \sim Gaussian(mu,Sigma)
Where NIW() is the Normal-Inverse-Wishart distribution, Gaussian() is the Gaussian distribution. See ?dNIW
and dGaussian
for the definitions of these distribution.
The model structure and prior parameters are stored in a "GaussianNIW" object.
Marginal likelihood = p(x|m,k,v,S)
1 2 | ## S3 method for class 'GaussianNIW'
marginalLikelihood_bySufficientStatistics(obj, ss, LOG = TRUE, ...)
|
obj |
A "GaussianNIW" object. |
ss |
Sufficient statistics of x. In Gaussian-NIW case the sufficient statistic of sample x is a object of type "ssGaussian", it can be generated by the function sufficientStatistics(). |
LOG |
Return the log density if set to "TRUE". |
... |
Additional arguments to be passed to other inherited types. |
numeric, the marginal likelihood.
Murphy, Kevin P. "Conjugate Bayesian analysis of the Gaussian distribution." def 1.22 (2007): 16.
Gelman, Andrew, et al. "Bayesian Data Analysis Chapman & Hall." CRC Texts in Statistical Science (2004).
GaussianNIW
, marginalLikelihood.GaussianNIW
1 2 3 4 5 6 | x <- rGaussian(1000,mu = c(1,1),Sigma = matrix(c(1,0.5,0.5,3),2,2))
obj <- GaussianNIW(gamma=list(m=c(0,0),k=1,v=2,S=diag(2)))
marginalLikelihood(obj = obj,x=x)
## or...
ss <- sufficientStatistics(obj=obj,x=x,foreach = FALSE)
marginalLikelihood_bySufficientStatistics(obj = obj,ss=ss)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.