posterior.GaussianInvWishart: Update a "GaussianInvWishart" object with sample sufficient...

Description Usage Arguments Value References See Also Examples

View source: R/Gaussian_Inference.r

Description

For the model structure:

x \sim Gaussian(mu,Sigma)

Sigma \sim InvWishart(v,S)

mu is known. Gaussian() is the Gaussian distribution. See ?dGaussian and ?dInvWishart for the definition of the distributions.
Update (v,S) by adding the information of newly observed samples x. The model structure and prior parameters are stored in a "GaussianInvWishart" object, the prior parameters in this object will be updated after running this function.

Usage

1
2
## S3 method for class 'GaussianInvWishart'
posterior(obj, ss, ...)

Arguments

obj

A "GaussianInvWishart" object.

ss

Sufficient statistics of x. In Gaussian and Inverse-Wishart case the sufficient statistic of sample x is a object of type "ssGaussianVar", it can be generated by the function sufficientStatistics().

...

Additional arguments to be passed to other inherited types.

Value

None. the gamma stored in "obj" will be updated based on "ss".

References

Gelman, Andrew, et al. Bayesian data analysis. CRC press, 2013.

MARolA, K. V., JT KBNT, and J. M. Bibly. Multivariate analysis. AcadeInic Press, Londres, 1979.

See Also

GaussianInvWishart,posteriorDiscard.GaussianInvWishart,sufficientStatistics.GaussianInvWishart

Examples

1
2
3
4
5
6
obj <- GaussianInvWishart(gamma=list(mu=c(-1.5,1.5),v=3,S=diag(2)))
x <- rGaussian(10,mu = c(-1.5,1.5),Sigma = matrix(c(0.1,0.03,0.03,0.1),2,2))
ss <- sufficientStatistics(obj=obj,x=x,foreach = FALSE)
obj
posterior(obj,ss = ss)
obj

bbricks documentation built on July 8, 2020, 7:29 p.m.