Description Usage Arguments Value References Examples
View source: R/Gamma_Inference.r
Generate random samples from Inverse-Wishart distribution. For a random matrix x, the density function of Inverse-Wishart is defined as:
(2^{(df p)/2} Gamma_p(df/2) |scale|^{-df/2})^{-1} |x|^{(-df-p-1)/2} exp(-1/2 tr(x^{-1} scale))
Where x is a pxp symmetric positive definite matrix, Gamma_p() is the multivariate Gamma function of dimension p.
1 |
df |
numeric, the degree of freedom. |
scale |
matrix, a symmetric positive-definite matrix, the 'scale' parameter. The 'rate' parameter in Wishart is the 'scale' parameter in InvWishart. |
A symmetric positive-definite matrix.
Hoff, Peter D. A first course in Bayesian statistical methods. Vol. 580. New York: Springer, 2009.
1 2 3 4 5 6 7 8 9 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.