Description Usage Arguments Value See Also Examples
View source: R/Gaussian_Inference.r
Generate random samples from the posterior distribution of the following structure:
x \sim Gaussian(mu,Sigma)
Sigma \sim InvWishart(v,S)
mu is known. Gaussian() is the Gaussian distribution. See ?dGaussian
and ?dInvWishart
for the definition of the distributions.
The model structure and prior parameters are stored in a "GaussianInvWishart" object.
Posterior distribution is InvWishart(Sigma|v,S).
1 2 | ## S3 method for class 'GaussianInvWishart'
rPosterior(obj, ...)
|
obj |
A "GaussianInvWishart" object. |
... |
Additional arguments to be passed to other inherited types. |
matrix, a sample of Sigma.
GaussianInvWishart
, dPosterior.GaussianInvWishart
1 2 | obj <- GaussianInvWishart(gamma=list(mu=c(-1.5,1.5),v=3,S=diag(2)))
rPosterior(obj = obj)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.