View source: R/BIOMOD_EnsembleForecasting.R
BIOMOD_EnsembleForecasting | R Documentation |
This function allows to project ensemble models built with the
BIOMOD_EnsembleModeling
function onto new environmental data
(which can represent new areas, resolution or time scales for example).
BIOMOD_EnsembleForecasting(
bm.em,
bm.proj = NULL,
proj.name = NULL,
new.env = NULL,
new.env.xy = NULL,
models.chosen = "all",
metric.binary = NULL,
metric.filter = NULL,
compress = TRUE,
nb.cpu = 1,
na.rm = TRUE,
...
)
bm.em |
a |
bm.proj |
a |
proj.name |
(optional, default |
new.env |
(optional, default |
new.env.xy |
(optional, default |
models.chosen |
a |
metric.binary |
(optional, default |
metric.filter |
(optional, default |
compress |
(optional, default |
nb.cpu |
(optional, default |
na.rm |
(optional, default |
... |
(optional, see Details) |
If models.chosen = 'all'
, projections are done for all calibration and pseudo absences
runs if applicable.
These projections may be used later by the
BIOMOD_EnsembleForecasting
function.
If build.clamping.mask = TRUE
, a raster file will be saved within the projection
folder. This mask values will correspond to the number of variables in each pixel that are out
of their calibration / validation range, identifying locations where predictions are uncertain.
...
can take the following values :
on_0_1000
: a logical
value defining whether 0 - 1
probabilities are to be converted to 0 - 1000
scale to save memory on backup
do.stack
: a logical
value defining whether all projections are to be
saved as one SpatRaster
object or several SpatRaster
files (the
default if projections are too heavy to be all loaded at once in memory)
keep.in.memory
: a logical
value defining whether all projections are
to be kept loaded at once in memory, or only links pointing to hard drive are to be returned
output.format
: a character
value corresponding to the projections
saving format on hard drive, must be either .grd
, .img
, .tif
or .RData
(the
default if new.env
is given as matrix
or data.frame
)
A BIOMOD.projection.out
object containing models projections, or links to saved
outputs.
Models projections are stored out of R (for memory storage reasons) in
proj.name
folder created in the current working directory :
the output is a data.frame
if new.env
is a matrix
or a
data.frame
it is a SpatRaster
if new.env
is a SpatRaster
(or several
SpatRaster
objects, if new.env
is too large)
raw projections, as well as binary and filtered projections (if asked),
are saved in the proj.name
folder
Wilfried Thuiller, Damien Georges, Robin Engler
BIOMOD_FormatingData
, bm_ModelingOptions
,
BIOMOD_Modeling
, BIOMOD_EnsembleModeling
,
BIOMOD_RangeSize
Other Main functions:
BIOMOD_EnsembleModeling()
,
BIOMOD_FormatingData()
,
BIOMOD_LoadModels()
,
BIOMOD_Modeling()
,
BIOMOD_Projection()
,
BIOMOD_RangeSize()
library(terra)
# Load species occurrences (6 species available)
data(DataSpecies)
head(DataSpecies)
# Select the name of the studied species
myRespName <- 'GuloGulo'
# Get corresponding presence/absence data
myResp <- as.numeric(DataSpecies[, myRespName])
# Get corresponding XY coordinates
myRespXY <- DataSpecies[, c('X_WGS84', 'Y_WGS84')]
# Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
data(bioclim_current)
myExpl <- terra::rast(bioclim_current)
# --------------------------------------------------------------- #
file.out <- paste0(myRespName, "/", myRespName, ".AllModels.models.out")
if (file.exists(file.out)) {
myBiomodModelOut <- get(load(file.out))
} else {
# Format Data with true absences
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
expl.var = myExpl,
resp.xy = myRespXY,
resp.name = myRespName)
# Model single models
myBiomodModelOut <- BIOMOD_Modeling(bm.format = myBiomodData,
modeling.id = 'AllModels',
models = c('RF', 'GLM'),
CV.strategy = 'random',
CV.nb.rep = 2,
CV.perc = 0.8,
OPT.strategy = 'bigboss',
metric.eval = c('TSS','ROC'),
var.import = 3,
seed.val = 42)
}
file.proj <- paste0(myRespName, "/proj_Current/", myRespName, ".Current.projection.out")
if (file.exists(file.proj)) {
myBiomodProj <- get(load(file.proj))
} else {
# Project single models
myBiomodProj <- BIOMOD_Projection(bm.mod = myBiomodModelOut,
proj.name = 'Current',
new.env = myExpl,
models.chosen = 'all',
build.clamping.mask = TRUE)
}
file.EM <- paste0(myRespName, "/", myRespName, ".AllModels.ensemble.models.out")
if (file.exists(file.EM)) {
myBiomodEM <- get(load(file.EM))
} else {
# Model ensemble models
myBiomodEM <- BIOMOD_EnsembleModeling(bm.mod = myBiomodModelOut,
models.chosen = 'all',
em.by = 'all',
em.algo = c('EMmean', 'EMca'),
metric.select = c('TSS'),
metric.select.thresh = c(0.7),
metric.eval = c('TSS', 'ROC'),
var.import = 3,
seed.val = 42)
}
# --------------------------------------------------------------- #
# Project ensemble models (from single projections)
myBiomodEMProj <- BIOMOD_EnsembleForecasting(bm.em = myBiomodEM,
bm.proj = myBiomodProj,
models.chosen = 'all',
metric.binary = 'all',
metric.filter = 'all')
# Project ensemble models (building single projections)
myBiomodEMProj <- BIOMOD_EnsembleForecasting(bm.em = myBiomodEM,
proj.name = 'CurrentEM',
new.env = myExpl,
models.chosen = 'all',
metric.binary = 'all',
metric.filter = 'all')
myBiomodEMProj
plot(myBiomodEMProj)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.