bm_Tuning | R Documentation |
This internal biomod2 function allows to tune single model parameters and select more efficient ones based on an evaluation metric.
bm_Tuning(
model,
tuning.fun,
do.formula = FALSE,
do.stepAIC = FALSE,
bm.options,
bm.format,
calib.lines = NULL,
metric.eval = "TSS",
metric.AIC = "AIC",
weights = NULL,
ctrl.train = NULL,
params.train = list(ANN.size = c(2, 4, 6, 8), ANN.decay = c(0.001, 0.01, 0.05, 0.1),
ANN.bag = FALSE, FDA.degree = 1:2, FDA.nprune = 2:38, GAM.select = c(TRUE, FALSE),
GAM.method = c("GCV.Cp", "GACV.Cp", "REML", "P-REML", "ML", "P-ML"), GAM.span =
c(0.3, 0.5, 0.7), GAM.degree = 1, GBM.n.trees = c(500, 1000, 2500),
GBM.interaction.depth = seq(2, 8, by = 3), GBM.shrinkage = c(0.001, 0.01, 0.1),
GBM.n.minobsinnode = 10, MARS.degree = 1:2, MARS.nprune = 2:max(38, 2 *
ncol(bm.format@data.env.var) + 1), MAXENT.algorithm = "maxnet",
MAXENT.parallel
= TRUE, RF.mtry = 1:min(10, ncol(bm.format@data.env.var)), SRE.quant = c(0, 0.0125,
0.025, 0.05, 0.1), XGBOOST.nrounds = 50, XGBOOST.max_depth = 1, XGBOOST.eta = c(0.3,
0.4), XGBOOST.gamma = 0, XGBOOST.colsample_bytree = c(0.6, 0.8),
XGBOOST.min_child_weight = 1, XGBOOST.subsample = 0.5)
)
model |
a |
tuning.fun |
a |
do.formula |
(optional, default |
do.stepAIC |
(optional, default |
bm.options |
a |
bm.format |
a |
calib.lines |
(optional, default |
metric.eval |
a |
metric.AIC |
a |
weights |
(optional, default |
ctrl.train |
(optional, default |
params.train |
a |
Concerning ctrl.train
parameter :
Set by default to :
ctrl.train <- caret::trainControl(method = "repeatedcv", repeats = 3, number = 10,
summaryFunction = caret::twoClassSummary,
classProbs = TRUE, returnData = FALSE)
Concerning params.train
parameter :
All elements of the list
must have names matching model.parameter_name
format,
parameter_name
being one of the parameter of the tuning.fun
function called by
caret
package and that can be found through the getModelInfo
function.
Currently, the available parameters to be tuned are the following :
size
, decay
, bag
maxdepth
degree
, nprune
span
, degree
select
, method
n.trees
, interaction.depth
, shrinkage
, n.minobsinnode
degree
, nprune
algorithm
, parallel
mtry
quant
nrounds
, max_depth
, eta
, gamma
,
colsampl_bytree
, min_child_weight
, subsample
The expand.grid
function is used to build a matrix
containing all
combinations of parameters to be tested.
A BIOMOD.models.options
object (see bm_ModelingOptions
) with
optimized parameters
No tuning for GLM
and MAXNET
MAXENT
is tuned through ENMevaluate
function which is
calling either :
maxnet (by defining MAXENT.algorithm = 'maxnet'
) (default)
Java version of Maxent defined in dismo package (by defining
MAXENT.algorithm = 'maxent.jar'
)
SRE
is tuned through bm_SRE
function
All other models are tuned through train
function
No optimization of formula for MAXENT
, MAXNET
, SRE
and
XGBOOST
No interaction included in formula for CTA
Variables selection only for GAM.gam
and GLM
Frank Breiner, Maya Gueguen, Helene Blancheteau
trainControl
, train
,
ENMevaluate
,
ModelsTable
, BIOMOD.models.options
,
bm_ModelingOptions
, BIOMOD_Modeling
Other Secundary functions:
bm_BinaryTransformation()
,
bm_CrossValidation()
,
bm_FindOptimStat()
,
bm_MakeFormula()
,
bm_ModelingOptions()
,
bm_PlotEvalBoxplot()
,
bm_PlotEvalMean()
,
bm_PlotRangeSize()
,
bm_PlotResponseCurves()
,
bm_PlotVarImpBoxplot()
,
bm_PseudoAbsences()
,
bm_RunModelsLoop()
,
bm_SRE()
,
bm_SampleBinaryVector()
,
bm_SampleFactorLevels()
,
bm_VariablesImportance()
library(terra)
# Load species occurrences (6 species available)
data(DataSpecies)
head(DataSpecies)
# Select the name of the studied species
myRespName <- 'GuloGulo'
# Get corresponding presence/absence data
myResp <- as.numeric(DataSpecies[, myRespName])
# Get corresponding XY coordinates
myRespXY <- DataSpecies[, c('X_WGS84', 'Y_WGS84')]
# Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
data(bioclim_current)
myExpl <- terra::rast(bioclim_current)
# --------------------------------------------------------------- #
# Format Data with true absences
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
expl.var = myExpl,
resp.xy = myRespXY,
resp.name = myRespName)
# --------------------------------------------------------------- #
# List of all models currently available in `biomod2` (and their related package and function)
# Some of them can be tuned through the `train` function of the `caret` package
# (and corresponding training function to be used is indicated)
data(ModelsTable)
ModelsTable
allModels <- c('ANN', 'CTA', 'FDA', 'GAM', 'GBM', 'GLM'
, 'MARS', 'MAXENT', 'MAXNET', 'RF', 'SRE', 'XGBOOST')
# default parameters
opt.d <- bm_ModelingOptions(data.type = 'binary',
models = allModels,
strategy = 'default')
# tune parameters for Random Forest model
tuned.rf <- bm_Tuning(model = 'RF',
tuning.fun = 'rf', ## see in ModelsTable
do.formula = FALSE,
bm.options = opt.d@options$RF.binary.randomForest.randomForest,
bm.format = myBiomodData)
tuned.rf
## Not run:
# tune parameters for GAM (from mgcv package) model
tuned.gam <- bm_Tuning(model = 'GAM',
tuning.fun = 'gam', ## see in ModelsTable
do.formula = TRUE,
do.stepAIC = TRUE,
bm.options = opt.d@options$GAM.binary.mgcv.gam,
bm.format = myBiomodData)
tuned.gam
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.