View source: R/bm_ModelingOptions.R
| bm_ModelingOptions | R Documentation |
Parameterize and/or tune biomod2's single models options.
bm_ModelingOptions(
data.type,
models = c("ANN", "CTA", "FDA", "GAM", "GBM", "GLM", "MARS", "MAXENT", "MAXNET", "RF",
"SRE", "XGBOOST"),
strategy,
user.val = NULL,
user.base = "bigboss",
bm.format = NULL,
calib.lines = NULL
)
data.type |
a |
models |
a |
strategy |
a |
user.val |
(optional, default |
user.base |
(optional, default |
bm.format |
(optional, default |
calib.lines |
(optional, default |
This function creates a BIOMOD.models.options object containing parameter values
for each single model that can be run within biomod2 through
BIOMOD_Modeling function.
12 models are currently available, and are listed within the ModelsTable dataset.
Different strategies are available to set those parameters, through the strategy
argument :
all parameters names and values are directly retrieve from functions to be
called through formalArgs and formals functions respectively
default parameter values are updated with values predefined by biomod2 team
default parameter values are updated with values provided by the user
default parameter values are updated by calling bm_Tuning
function
A BIOMOD.models.options of object that can be used to build species
distribution model(s) with the BIOMOD_Modeling function.
MAXENT being the only external model (not called through a R package),
default parameters, and their values, are the following :
path_to_maxent.jar = getwd() : a character corresponding to path to
maxent.jar file
memory_allocated = 512 : an integer corresponding to the amount of
memory (in Mo) reserved for java to run MAXENT, must be either 64,
128, 256, 512, 1024... or NULL to use default java
memory limitation parameter
initial_heap_size = NULL : a character corresponding to initial heap
space (shared memory space) allocated to java (argument -Xms when calling
java), must be either 1024K, 4096M, 10G ... or NULL to
use default java parameter. Used in BIOMOD_Projection but not in
BIOMOD_Modeling.
max_heap_size = NULL : a character corresponding to maximum heap
space (shared memory space) allocated to java (argument -Xmx when calling
java), must be either 1024K, 4096M, 10G ... or NULL to
use default java parameter, and must be larger than initial_heap_size. Used
in BIOMOD_Projection but not in BIOMOD_Modeling.
background_data_dir = 'default' : a character corresponding to path
to folder where explanatory variables are stored as ASCII files (raster format).
If specified, MAXENT will generate its own background data from rasters of
explanatory variables ('default' value). Otherwise biomod2 pseudo-absences
will be used (see BIOMOD_FormatingData).
visible = FALSE : a logical value defining whether MAXENT
user interface is to be used or not
linear = TRUE : a logical value defining whether linear features are
to be used or not
quadratic = TRUE : a logical value defining whether quadratic features are
to be used or not
product = TRUE : a logical value defining whether product features are
to be used or not
threshold = TRUE : a logical value defining whether threshold features are
to be used or not
hinge = TRUE : a logical value defining whether hinge features are
to be used or not
l2lqthreshold = 10 : an integer corresponding to the number of
samples at which quadratic features start being used
lq2lqptthreshold = 80 : an integer corresponding to the number of
samples at which product and threshold features start being used
hingethreshold = 15 : an integer corresponding to the number of
samples at which hinge features start being used
beta_lqp = -1.0 : a numeric corresponding to the regularization
parameter to be applied to all linear, quadratic and product features (negative value
enables automatic setting)
beta_threshold = -1.0 : a numeric corresponding to the regularization
parameter to be applied to all threshold features (negative value enables automatic
setting)
beta_hinge = -1.0 : a numeric corresponding to the regularization
parameter to be applied to all hinge features (negative value enables automatic
setting)
beta_categorical = -1.0 : a numeric corresponding to the regularization
parameter to be applied to all categorical features (negative value enables automatic
setting)
betamultiplier = 1 : a numeric corresponding to the number by which
multiply all automatic regularization parameters (higher number gives a more
spread-out distribution)
defaultprevalence = 0.5 : a numeric corresponding to the default
prevalence of the modelled species (probability of presence at ordinary occurrence
points)
Damien Georges, Wilfried Thuiller, Maya Gueguen
ModelsTable, BIOMOD.models.options,
bm_Tuning, BIOMOD_Modeling
Other Secundary functions:
bm_BinaryTransformation(),
bm_CrossValidation(),
bm_FindOptimStat(),
bm_MakeFormula(),
bm_PlotEvalBoxplot(),
bm_PlotEvalMean(),
bm_PlotRangeSize(),
bm_PlotResponseCurves(),
bm_PlotVarImpBoxplot(),
bm_PseudoAbsences(),
bm_RunModelsLoop(),
bm_SRE(),
bm_SampleBinaryVector(),
bm_SampleFactorLevels(),
bm_Tuning(),
bm_VariablesImportance()
library(terra)
# Load species occurrences (6 species available)
data(DataSpecies)
head(DataSpecies)
# Select the name of the studied species
myRespName <- 'GuloGulo'
# Get corresponding presence/absence data
myResp <- as.numeric(DataSpecies[, myRespName])
# Get corresponding XY coordinates
myRespXY <- DataSpecies[, c('X_WGS84', 'Y_WGS84')]
# Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
data(bioclim_current)
myExpl <- terra::rast(bioclim_current)
# ---------------------------------------------------------------#
# Format Data with true absences
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
expl.var = myExpl,
resp.xy = myRespXY,
resp.name = myRespName)
# k-fold selection
cv.k <- bm_CrossValidation(bm.format = myBiomodData,
strategy = 'kfold',
nb.rep = 2,
k = 3)
# ---------------------------------------------------------------#
allModels <- c('ANN', 'CTA', 'FDA', 'GAM', 'GBM', 'GLM'
, 'MARS', 'MAXENT', 'MAXNET', 'RF', 'SRE', 'XGBOOST')
# default parameters
opt.d <- bm_ModelingOptions(data.type = 'binary',
models = allModels,
strategy = 'default')
# providing formated data
opt.df <- bm_ModelingOptions(data.type = 'binary',
models = allModels,
strategy = 'default',
bm.format = myBiomodData,
calib.lines = cv.k)
opt.d
opt.d@models
opt.d@options$ANN.binary.nnet.nnet
names(opt.d@options$ANN.binary.nnet.nnet@args.values)
opt.df@options$ANN.binary.nnet.nnet
names(opt.df@options$ANN.binary.nnet.nnet@args.values)
# ---------------------------------------------------------------#
# bigboss parameters
opt.b <- bm_ModelingOptions(data.type = 'binary',
models = allModels,
strategy = 'bigboss')
# user defined parameters
user.SRE <- list('_allData_allRun' = list(quant = 0.01))
user.XGBOOST <- list('_allData_allRun' = list(nrounds = 10))
user.val <- list(SRE.binary.biomod2.bm_SRE = user.SRE
, XGBOOST.binary.xgboost.xgboost = user.XGBOOST)
opt.u <- bm_ModelingOptions(data.type = 'binary',
models = c('SRE', 'XGBOOST'),
strategy = 'user.defined',
user.val = user.val)
opt.b
opt.u
## Not run:
# tuned parameters with formated data
opt.t <- bm_ModelingOptions(data.type = 'binary',
models = c('SRE', 'XGBOOST'),
strategy = 'tuned',
bm.format = myBiomodData)
opt.t
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.