View source: R/BIOMOD_Modeling.R
BIOMOD_Modeling | R Documentation |
This function allows to calibrate and evaluate a range of modeling techniques for a given species distribution. The dataset can be split up in calibration/validation parts, and the predictive power of the different models can be estimated using a range of evaluation metrics (see Details).
BIOMOD_Modeling(
bm.format,
modeling.id = as.character(format(Sys.time(), "%s")),
models = c("ANN", "CTA", "FDA", "GAM", "GBM", "GLM", "MARS", "MAXENT", "MAXNET", "RF",
"SRE", "XGBOOST"),
models.pa = NULL,
CV.strategy = "random",
CV.nb.rep = 1,
CV.perc = NULL,
CV.k = NULL,
CV.balance = NULL,
CV.env.var = NULL,
CV.strat = NULL,
CV.user.table = NULL,
CV.do.full.models = TRUE,
OPT.data.type = "binary",
OPT.strategy = "default",
OPT.user.val = NULL,
OPT.user.base = "bigboss",
OPT.user = NULL,
bm.options,
nb.rep,
data.split.perc,
data.split.table,
do.full.models,
weights = NULL,
prevalence = NULL,
metric.eval = c("KAPPA", "TSS", "ROC"),
var.import = 0,
scale.models = FALSE,
nb.cpu = 1,
seed.val = NULL,
do.progress = TRUE
)
bm.format |
a |
modeling.id |
a |
models |
a |
models.pa |
(optional, default |
CV.strategy |
a |
CV.nb.rep |
(optional, default |
CV.perc |
(optional, default |
CV.k |
(optional, default |
CV.balance |
(optional, default |
CV.env.var |
(optional) |
CV.strat |
(optional, default |
CV.user.table |
(optional, default |
CV.do.full.models |
(optional, default |
OPT.data.type |
a |
OPT.strategy |
a |
OPT.user.val |
(optional, default |
OPT.user.base |
(optional, default |
OPT.user |
(optional, default |
bm.options |
a |
nb.rep |
deprecated, now called |
data.split.perc |
deprecated, now called |
data.split.table |
deprecated, now called |
do.full.models |
deprecated, now called |
weights |
(optional, default |
prevalence |
(optional, default |
metric.eval |
a |
var.import |
(optional, default |
scale.models |
(optional, default |
nb.cpu |
(optional, default |
seed.val |
(optional, default |
do.progress |
(optional, default |
If pseudo absences have been added to the original dataset (see
BIOMOD_FormatingData
),
PA.nb.rep *(nb.rep + 1)
models will be
created.
The set of models to be calibrated on the data. 12 modeling techniques are currently available :
ANN
: Artificial Neural Network (nnet
)
CTA
: Classification Tree Analysis (rpart
)
FDA
: Flexible Discriminant Analysis (fda
)
GAM
: Generalized Additive Model (gam
, gam
or bam
)
(see bm_ModelingOptions for details on algorithm selection
)
GBM
: Generalized Boosting Model, or usually called Boosted Regression Trees
(gbm
)
GLM
: Generalized Linear Model (glm
)
MARS
: Multiple Adaptive Regression Splines (earth
)
MAXENT
: Maximum Entropy
(https://biodiversityinformatics.amnh.org/open_source/maxent/)
MAXNET
: Maximum Entropy (maxnet
)
RF
: Random Forest (randomForest
)
SRE
: Surface Range Envelop or usually called BIOCLIM (bm_SRE
)
XGBOOST
: eXtreme Gradient Boosting Training (xgboost
)
Different models might respond differently to different numbers of
pseudo-absences. It is possible to create sets of pseudo-absences with different numbers
of points (see BIOMOD_FormatingData
) and to assign only some of these
datasets to each single model.
Different methods are available to calibrate/validate the
single models (see bm_CrossValidation
).
Different methods are available to parameterize the
single models (see bm_ModelingOptions
and
BIOMOD.options.dataset
). Note that only binary
data type is
allowed currently.
default
: only default parameter values of default parameters of the single
models functions are retrieved. Nothing is changed so it might not give good results.
bigboss
: uses parameters pre-defined by biomod2 team and that are
available in the dataset OptionsBigboss
.
to be optimized in near future
user.defined
: updates default or bigboss parameters with some parameters
values defined by the user (but matching the format of a
BIOMOD.models.options
object)
tuned
: calling the bm_Tuning
function to try and optimize
some default values
More or less weight can be given to some specific observations.
If weights = prevalence = NULL
, each observation (presence or absence) will
have the same weight, no matter the total number of presences and absences.
If prevalence = 0.5
, presences and absences will be weighted equally
(i.e. the weighted sum of presences equals the weighted sum of absences).
If prevalence
is set below (above) 0.5
, more weight will be
given to absences (presences).
If weights
is defined, prevalence
argument will be ignored, and each
observation will have its own weight.
If pseudo-absences have been generated (PA.nb.rep > 0
in
BIOMOD_FormatingData
), weights are by default calculated such that
prevalence = 0.5
. Automatically created weights
will be integer
values to prevent some modeling issues.
POD
: Probability of detection (hit rate)
FAR
: False alarm ratio
POFD
: Probability of false detection (fall-out)
SR
: Success ratio
ACCURACY
: Accuracy (fraction correct)
BIAS
: Bias score (frequency bias)
ROC
: Relative operating characteristic
TSS
: True skill statistic (Hanssen and Kuipers discriminant, Peirce's
skill score)
KAPPA
: Cohen's Kappa (Heidke skill score)
OR
: Odds Ratio
ORSS
: Odds ratio skill score (Yule's Q)
CSI
: Critical success index (threat score)
ETS
: Equitable threat score (Gilbert skill score)
BOYCE
: Boyce index
MPA
: Minimal predicted area (cutoff optimising MPA to predict 90% of
presences)
Optimal value of each method can be obtained with the get_optim_value
function. Several evaluation metrics can be selected. Please refer to the
CAWRC website (section "Methods for
dichotomous forecasts") to get detailed description of each metric.
Results after modeling can be obtained through the get_evaluations
function.
Evaluation metric are calculated on the calibrating data (column calibration
), on
the cross-validation data (column validation
) or on the evaluation data
(column evaluation
).
For cross-validation data, see CV.[...]
parameters in BIOMOD_Modeling
function ; for evaluation data, see
eval.[...]
parameters in BIOMOD_FormatingData
.
A value caracterizing how much each variable has an impact on each model
predictions can be calculated by randomizing the variable of interest and computing the
correlation between original and shuffled variables (see bm_VariablesImportance
).
This parameter is quite experimental and it is recommended
not to use it. It may lead to reduction in projection scale amplitude. Some categorical
models always have to be scaled (FDA
, ANN
), but it may be interesting to
scale all computed models to ensure comparable predictions (0-1000
range). It might
be particularly useful when doing ensemble forecasting to remove the scale prediction effect
(the more extended projections are, the more they influence ensemble forecasting
results).
A BIOMOD.models.out
object containing models outputs, or links to saved outputs.
Models outputs are stored out of R (for memory storage reasons) in 2 different folders
created in the current working directory :
a models folder, named after the resp.name
argument of
BIOMOD_FormatingData
, and containing all calibrated models for each
repetition and pseudo-absence run
a hidden folder, named .BIOMOD_DATA
, and containing outputs related
files (original dataset, calibration lines, pseudo-absences selected, predictions,
variables importance, evaluation values...), that can be retrieved with
get_[...]
or load
functions, and used by other biomod2 functions, like
BIOMOD_Projection
or BIOMOD_EnsembleModeling
Wilfried Thuiller, Damien Georges, Robin Engler
glm
, gam
,
gam
, bam
, gbm
,
rpart
, nnet
,
fda
, earth
,
randomForest
, maxnet
,
xgboost
, BIOMOD_FormatingData
,
bm_ModelingOptions
, bm_Tuning
,
bm_CrossValidation
,
bm_VariablesImportance
, BIOMOD_Projection
,
BIOMOD_EnsembleModeling
, bm_PlotEvalMean
,
bm_PlotEvalBoxplot
, bm_PlotVarImpBoxplot
,
bm_PlotResponseCurves
Other Main functions:
BIOMOD_EnsembleForecasting()
,
BIOMOD_EnsembleModeling()
,
BIOMOD_FormatingData()
,
BIOMOD_LoadModels()
,
BIOMOD_Projection()
,
BIOMOD_RangeSize()
library(terra)
# Load species occurrences (6 species available)
data(DataSpecies)
head(DataSpecies)
# Select the name of the studied species
myRespName <- 'GuloGulo'
# Get corresponding presence/absence data
myResp <- as.numeric(DataSpecies[, myRespName])
# Get corresponding XY coordinates
myRespXY <- DataSpecies[, c('X_WGS84', 'Y_WGS84')]
# Load environmental variables extracted from BIOCLIM (bio_3, bio_4, bio_7, bio_11 & bio_12)
data(bioclim_current)
myExpl <- terra::rast(bioclim_current)
# ---------------------------------------------------------------------------- #
# Format Data with true absences
myBiomodData <- BIOMOD_FormatingData(resp.var = myResp,
expl.var = myExpl,
resp.xy = myRespXY,
resp.name = myRespName)
# ---------------------------------------------------------------------------- #
# Model single models
myBiomodModelOut <- BIOMOD_Modeling(bm.format = myBiomodData,
modeling.id = 'AllModels',
models = c('RF', 'GLM'),
CV.strategy = 'random',
CV.nb.rep = 2,
CV.perc = 0.8,
OPT.strategy = 'bigboss',
metric.eval = c('TSS','ROC'),
var.import = 2,
seed.val = 42)
myBiomodModelOut
# Get evaluation scores & variables importance
get_evaluations(myBiomodModelOut)
get_variables_importance(myBiomodModelOut)
# Represent evaluation scores
bm_PlotEvalMean(bm.out = myBiomodModelOut, dataset = 'calibration')
bm_PlotEvalMean(bm.out = myBiomodModelOut, dataset = 'validation')
bm_PlotEvalBoxplot(bm.out = myBiomodModelOut, group.by = c('algo', 'run'))
# # Represent variables importance
# bm_PlotVarImpBoxplot(bm.out = myBiomodModelOut, group.by = c('expl.var', 'algo', 'algo'))
# bm_PlotVarImpBoxplot(bm.out = myBiomodModelOut, group.by = c('expl.var', 'algo', 'run'))
# bm_PlotVarImpBoxplot(bm.out = myBiomodModelOut, group.by = c('algo', 'expl.var', 'run'))
# # Represent response curves
# mods <- get_built_models(myBiomodModelOut, run = 'RUN1')
# bm_PlotResponseCurves(bm.out = myBiomodModelOut,
# models.chosen = mods,
# fixed.var = 'median')
# bm_PlotResponseCurves(bm.out = myBiomodModelOut,
# models.chosen = mods,
# fixed.var = 'min')
# mods <- get_built_models(myBiomodModelOut, full.name = 'GuloGulo_allData_RUN2_RF')
# bm_PlotResponseCurves(bm.out = myBiomodModelOut,
# models.chosen = mods,
# fixed.var = 'median',
# do.bivariate = TRUE)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.