R/scores.R

Defines functions alpha.star.backend cs.completed.prior per.node.score

# compute individual node contributions to the network score.
per.node.score = function(network, data, score, targets, extra.args,
    debug = FALSE) {

  .Call(call_per_node_score,
        network = network,
        data = data,
        score = score,
        targets = targets,
        extra.args = extra.args,
        debug = debug)

}#PER.NODE.SCORE

# complete a prior over arcs as per Castelo and Siebes.
cs.completed.prior = function(beta, nodes, learning = FALSE) {

  beta = .Call(call_castelo_completion,
               prior = beta,
               nodes = nodes,
               learning = learning)

  class(beta) = c("prior", "prior.cs", "data.frame")
  attr(beta, "nodes") = nodes

  return(beta)

}#CS.COMPLETED.PRIOR

# compute the optimal imaginary sample size for a discrete network.
alpha.star.backend = function(x, data, debug = FALSE) {

  .Call(call_alpha_star,
    x = x,
    data = data,
    debug = debug)

}#ALPHA.STAR.BACKEND

Try the bnlearn package in your browser

Any scripts or data that you put into this service are public.

bnlearn documentation built on Sept. 7, 2021, 1:07 a.m.