R/brm_multiple.R

Defines functions warn_brmsfit_multiple is_data2_list is_data_list combine_models brm_multiple

Documented in brm_multiple combine_models

#' Run the same \pkg{brms} model on multiple datasets
#'
#' Run the same \pkg{brms} model on multiple datasets and then combine the
#' results into one fitted model object. This is useful in particular for
#' multiple missing value imputation, where the same model is fitted on multiple
#' imputed data sets. Models can be run in parallel using the \pkg{future}
#' package.
#'
#' @inheritParams brm
#' @param data A \emph{list} of data.frames each of which will be used to fit a
#'   separate model. Alternatively, a \code{mids} object from the \pkg{mice}
#'   package.
#' @param data2 A \emph{list} of named lists each of which will be used to fit a
#'   separate model. Each of the named lists contains objects representing data
#'   which cannot be passed via argument \code{data} (see \code{\link{brm}} for
#'   examples). The length of the outer list should match the length of the list
#'   passed to the \code{data} argument.
#' @param recompile Logical, indicating whether the Stan model should be
#'   recompiled for every imputed data set. Defaults to \code{FALSE}. If
#'   \code{NULL}, \code{brm_multiple} tries to figure out internally, if recompilation
#'   is necessary, for example because data-dependent priors have changed.
#'   Using the default of no recompilation should be fine in most cases.
#' @param combine Logical; Indicates if the fitted models should be combined
#'   into a single fitted model object via \code{\link{combine_models}}.
#'   Defaults to \code{TRUE}.
#' @param fit An instance of S3 class \code{brmsfit_multiple} derived from a
#'   previous fit; defaults to \code{NA}. If \code{fit} is of class
#'   \code{brmsfit_multiple}, the compiled model associated with the fitted
#'   result is re-used and all arguments modifying the model code or data are
#'   ignored. It is not recommended to use this argument directly, but to call
#'   the \code{\link[brms:update.brmsfit_multiple]{update}} method, instead.
#' @param ... Further arguments passed to \code{\link{brm}}.
#'
#' @details The combined model may issue false positive convergence warnings, as
#'   the MCMC chains corresponding to different datasets may not necessarily
#'   overlap, even if each of the original models did converge. To find out
#'   whether each of the original models converged, subset the draws belonging
#'   to the individual models and then run convergence diagnostics.
#'   See Examples below for details.
#'
#' @return If \code{combine = TRUE} a \code{brmsfit_multiple} object, which
#'   inherits from class \code{brmsfit} and behaves essentially the same. If
#'   \code{combine = FALSE} a list of \code{brmsfit} objects.
#'
#' @examples
#' \dontrun{
#' library(mice)
#' m <- 5
#' imp <- mice(nhanes2, m = m)
#'
#' # fit the model using mice and lm
#' fit_imp1 <- with(lm(bmi ~ age + hyp + chl), data = imp)
#' summary(pool(fit_imp1))
#'
#' # fit the model using brms
#' fit_imp2 <- brm_multiple(bmi ~ age + hyp + chl, data = imp, chains = 1)
#' summary(fit_imp2)
#' plot(fit_imp2, variable = "^b_", regex = TRUE)
#'
#' # investigate convergence of the original models
#' library(posterior)
#' draws <- as_draws_array(fit_imp2)
#' # every dataset has just one chain here
#' draws_per_dat <- lapply(1:m, \(i) subset_draws(draws, chain = i))
#' lapply(draws_per_dat, summarise_draws, default_convergence_measures())
#'
#' # use the future package for parallelization
#' library(future)
#' plan(multisession, workers = 4)
#' fit_imp3 <- brm_multiple(bmi ~ age + hyp + chl, data = imp, chains = 1)
#' summary(fit_imp3)
#' }
#'
#' @export
brm_multiple <- function(formula, data, family = gaussian(), prior = NULL,
                         data2 = NULL, autocor = NULL, cov_ranef = NULL,
                         sample_prior = c("no", "yes", "only"),
                         sparse = NULL, knots = NULL, stanvars = NULL,
                         stan_funs = NULL, silent = 1, recompile = FALSE,
                         combine = TRUE, fit = NA,
                         algorithm = getOption("brms.algorithm", "sampling"),
                         seed = NA, file = NULL, file_compress = TRUE,
                         file_refit = getOption("brms.file_refit", "never"),
                         ...) {

  combine <- as_one_logical(combine)
  file_refit <- match.arg(file_refit, file_refit_options())
  if (!is.null(file)) {
    if (file_refit == "on_change") {
      stop2("file_refit = 'on_change' is not supported for brm_multiple yet.")
    }
    # optionally load saved model object
    if (!combine) {
      stop2("Cannot use 'file' if 'combine' is FALSE.")
    }
    if (file_refit != "always") {
      fits <- read_brmsfit(file)
      if (!is.null(fits)) {
        return(fits)
      }
    }
  }

  algorithm <- match.arg(algorithm, algorithm_choices())
  silent <- validate_silent(silent)
  recompile <- as_one_logical(recompile)
  data_name <- substitute_name(data)
  if (inherits(data, "mids")) {
    require_package("mice", version = "3.0.0")
    data <- lapply(seq_len(data$m), mice::complete, data = data)
  } else if (!is_data_list(data)) {
    stop2("'data' must be a list of data.frames.")
  }
  if (!is.null(data2)) {
    if (!is_data2_list(data2)) {
      stop2("'data2' must be a list of named lists.")
    }
    if (length(data2) != length(data)) {
      stop2("'data2' must have the same length as 'data'.")
    }
  }

  if (is.brmsfit(fit)) {
    # avoid complications when updating the model
    class(fit) <- setdiff(class(fit), "brmsfit_multiple")
  } else {
    args <- nlist(
      formula, data = data[[1]], family, prior, data2 = data2[[1]],
      autocor, cov_ranef, sample_prior, sparse, knots, stanvars,
      stan_funs, algorithm, silent, seed, ...
    )
    args$chains <- 0
    if (silent < 2) {
      message("Compiling the C++ model")
    }
    fit <- suppressMessages(do_call(brm, args))
  }

  dots <- list(...)
  # allow compiling the model without sampling (#671)
  if (isTRUE(dots$chains == 0) || isTRUE(dots$iter == 0)) {
    class(fit) <- c("brmsfit_multiple", class(fit))
    return(fit)
  }

  .brm <- function(i, ...) {
    if (silent < 2) {
      message("Fitting imputed model ", i)
    }
    update(fit, newdata = data[[i]], data2 = data2[[i]],
           recompile = recompile, silent = silent, ...)
  }

  fits <- future.apply::future_lapply(
    seq_along(data), .brm, ..., future.seed = TRUE
  )

  if (combine) {
    fits <- combine_models(mlist = fits, check_data = FALSE)
    attr(fits$data, "data_name") <- data_name
    # attribute to remember how many imputed datasets where used
    attr(fits, "nimp") <- length(data)
    class(fits) <- c("brmsfit_multiple", class(fits))
  }
  if (!is.null(file)) {
    fits <- write_brmsfit(fits, file, compress = file_compress)
  }
  fits
}

#' Combine Models fitted with \pkg{brms}
#'
#' Combine multiple \code{brmsfit} objects, which fitted the same model.
#' This is usefully for instance when having manually run models in parallel.
#'
#' @param ... One or more \code{brmsfit} objects.
#' @param mlist Optional list of one or more \code{brmsfit} objects.
#' @param check_data Logical; indicates if the data should be checked
#'   for being the same across models (defaults to \code{TRUE}).
#'   Setting it to \code{FALSE} may be useful for instance
#'   when combining models fitted on multiple imputed data sets.
#'
#' @details This function just takes the first model and replaces
#'   its \code{stanfit} object (slot \code{fit}) by the combined
#'   \code{stanfit} objects of all models.
#'
#' @return A \code{brmsfit} object.
#'
#' @export
combine_models <- function(..., mlist = NULL, check_data = TRUE) {
  models <- c(list(...), mlist)
  check_data <- as_one_logical(check_data)
  if (!length(models)) {
    stop2("No models supplied to 'combine_models'.")
  }
  for (i in seq_along(models)) {
    if (!is.brmsfit(models[[i]])) {
      stop2("Model ", i, " is no 'brmsfit' object.")
    }
    models[[i]] <- restructure(models[[i]])
  }
  ref_formula <- formula(models[[1]])
  ref_pars <- variables(models[[1]])
  ref_mf <- model.frame(models[[1]])
  for (i in seq_along(models)[-1]) {
    if (!is_equal(formula(models[[i]]), ref_formula)) {
      stop2("Models 1 and ", i, " have different formulas.")
    }
    if (!is_equal(variables(models[[i]]), ref_pars)) {
      stop2("Models 1 and ", i, " have different parameters.")
    }
    if (check_data && !is_equal(model.frame(models[[i]]), ref_mf)) {
      stop2(
        "Models 1 and ", i, " have different data. ",
        "Set 'check_data' to FALSE to turn off checking of the data."
      )
    }
  }
  sflist <- from_list(models, "fit")
  out <- models[[1]]
  out$fit <- rstan::sflist2stanfit(sflist)
  # fixes issue #1603
  out <- save_old_par_order(out, models[[1]])
  if (out$backend == "cmdstanr") {
    att <- attributes(models[[1]]$fit)
    attributes(out$fit)$CmdStanModel <- att$CmdStanModel
    attributes(out$fit)$metadata <- att$metadata
  }
  out
}

# validity check for 'data' input of 'brm_multiple'
is_data_list <- function(x) {
  # see also issue #1383
  is.list(x) && (is.vector(x) || all(vapply(x, is.data.frame, logical(1L))))
}

# validity check for 'data2' input of 'brm_multiple'
is_data2_list <- function(x) {
  is.list(x) && all(ulapply(x, function(y) is.list(y) && is_named(y)))
}

warn_brmsfit_multiple <- function(x, newdata = NULL) {
  if (is.brmsfit_multiple(x) && is.null(newdata)) {
    warning2(
      "Using only the first imputed data set. Please interpret the results ",
      "with caution until a more principled approach has been implemented."
    )
  }
  invisible(x)
}

Try the brms package in your browser

Any scripts or data that you put into this service are public.

brms documentation built on Sept. 23, 2024, 5:08 p.m.